A Paramagnetic Compass Based on Lanthanide Metal-Organic Framework
Hao Jia
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Baipeng Yin
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorJiaying Chen
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Ye Zou
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorHong Wang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYu Zhang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Tongmei Ma
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorProf. Qiang Shi
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Jiannian Yao
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Shuming Bai
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Chuang Zhang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorHao Jia
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Baipeng Yin
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorJiaying Chen
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Ye Zou
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorHong Wang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYu Zhang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Tongmei Ma
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorProf. Qiang Shi
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Jiannian Yao
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Shuming Bai
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Chuang Zhang
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorGraphical Abstract
Paramagnetic lanthanide metal–organic framework (Ln-MOF) crystals show unexpected compass-like alignments at low fields (∼mT). The magnetic alignments originate from the symmetry-related summation of Ln-ions’ molecular anisotropy, among which the perpendicular, parallel, and inclined alignments can be manipulated and switched by crystal structures and chemical environments.
Abstract
Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a “paramagnetic compass” that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions’ molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. H. Meiklejohn, C. P. Bean, Phys. Rev. 1957, 105, 904–913;
- 1bI. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser, C. Piamonteze, F. Nolting, S. Gangopadhyay, O. R. Albertini, R. M. Macfarlane, C. P. Lutz, B. A. Jones, P. Gambardella, A. J. Heinrich, H. Brune, Science 2014, 344, 988–992;
- 1cS. Qin, H. Yin, C. Yang, Y. Dou, Z. Liu, P. Zhang, H. Yu, Y. Huang, J. Feng, J. Hao, J. Hao, L. Deng, X. Yan, X. Dong, Z. Zhao, T. Jiang, H.-W. Wang, S.-J. Luo, C. Xie, Nat. Mater. 2016, 15, 217–226.
- 2
- 2aA. J. Freeman, R. E. Watson, Phys. Rev. 1961, 124, 1439–1454;
- 2bY. Kim, H. Yuk, R. Zhao, S. A. Chester, X. Zhao, Nature 2018, 588, 274–279;
- 2cW. Hu, G. Z. Lum, M. Mastrangeli, M. Sitti, Nature 2018, 554, 81–85.
- 3
- 3aK. Binnemans, Y. G. Galyametdinov, R. Van Deun, D. W. Bruce, S. R. Collinson, A. P. Polishchuk, I. Bikchantaev, W. Haase, A. V. Prosvirin, L. Tinchurina, I. Litvinov, A. Gubajdullin, A. Rakhmatullin, K. Uytterhoeven, L. Van Meervelt, J. Am. Chem. Soc. 2000, 122, 4335–4344;
- 3bT. Tu, T. Sakurai, S. Seki, Y. Ishida, Y. Chan, Angew. Chem. Int. Ed. 2021, 60, 1923–1928;
- 3cV. Marichez, A. Sato, P. A. Dunne, J. Leira-Iglesias, G. J. M. Formon, M. K. Schicho, I. de Feijter, P. Hébraud, M. Bailleul, P. Besenius, M. Venkatesan, J. M. D. Coey, E. W. Meijer, T. M. Hermans, J. Am. Chem. Soc. 2021, 143, 11914–11918;
- 3dS. Polarz, C. Bährle, S. Landsmann, A. Klaiber, Angew. Chem. Int. Ed. 2013, 52, 13665–13670.
- 4
- 4aJ.-L. Liu, Y.-C. Chen, M.-L. Tong, Chem. Soc. Rev. 2018, 47, 2413–2453;
- 4bG. Cucinotta, M. Perfetti, J. Luzon, M. Etienne, P.-E. Car, A. Caneschi, G. Calvez, K. Bernot, R. Sessoli, Angew. Chem. Int. Ed. 2012, 51, 1606–1610;
- 4cR. Vogel, T. Müntener, D. Häussinger, Chem 2021, 7, 3144–3156;
- 4dC. Gao, A. Genoni, S. Gao, S. Jiang, A. Soncini, J. Overgaard, Nat. Chem. 2020, 12, 213–219;
- 4eY.-H. Fang, Z. Liu, S. Zhou, P.-X. Fu, Y.-X. Wang, Z.-Y. Wang, Z.-M. Wang, S. Gao, S.-D. Jiang, J. Am. Chem. Soc. 2022, 144, 8605–8612;
- 4fC. A. Gould, K. R. McClain, D. Reta, J. G. C. Kragskow, D. A. Marchiori, E. Lachman, E.-S. Choi, J. G. Analytis, R. D. Britt, N. F. Chilton, B. G. Harvey, J. R. Long, Science 2022, 375, 198–202.
- 5
- 5aJ. G. Park, B. A. Collins, L. E. Darago, T. Runčevski, M. E. Ziebel, M. L. Aubrey, H. Z. H. Jiang, E. Velasquez, M. A. Green, J. D. Goodpaster, J. R. Long, Nat. Chem. 2021, 13, 594–598;
- 5bY. Ma, Y. Wang, J. Cong, Y. Sun, Phys. Rev. Lett. 2019, 122, 255701.
- 6
- 6aS. T. Liddle, J. van Slageren, Chem. Soc. Rev. 2015, 44, 6655–6669;
- 6bM. Briganti, E. Lucaccini, L. Chelazzi, S. Ciattini, L. Sorace, R. Sessoli, F. Totti, M. Perfetti, J. Am. Chem. Soc. 2021, 143, 8108–8115.
- 7J. Sun, W. Zheng, P. Huang, M. Zhang, W. Zhang, Z. Deng, S. Yu, M. Jin, X. Chen, Angew. Chem. Int. Ed. 2022, 61, e202201993.
- 8
- 8aC. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature 2017, 548, 439–442;
- 8bF.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science 2018, 362, 1400–1403.
- 9C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, Phys. Rev. Lett. 2017, 119, 187702.
- 10A. A. Knyazev, A. S. Krupin, A. P. Kovshik, Y. G. Galyametdinov, Inorg. Chem. 2021, 60, 660–670.
- 11
- 11aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 11bP. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, D. Fairen-Jimenez, Chem. Mater. 2017, 29, 2618–2625;
- 11cA. E. Thorarinsdottir, T. D. Harris, Chem. Rev. 2020, 120, 8716–8789;
- 11dJ. M. Zadrozny, A. T. Gallagher, T. D. Harris, D. E. Freedman, J. Am. Chem. Soc. 2017, 139, 7089–7094;
- 11eG. Mínguez Espallargas, E. Coronado, Chem. Soc. Rev. 2018, 47, 533–557;
- 11fJ. López-Cabrelles, S. Mañas-Valero, I. J. Vitórica-Yrezábal, M. Šiškins, M. Lee, P. G. Steeneken, H. S. J. van der Zant, G. Mínguez Espallargas, E. Coronado, J. Am. Chem. Soc. 2021, 143, 18502–18510;
- 11gD. Aulakh, L. Liu, J. R. Varghese, H. Xie, T. Islamoglu, K. Duell, C.-W. Kung, C.-E. Hsiung, Y. Zhang, R. J. Drout, O. K. Farha, K. R. Dunbar, Y. Han, M. Wriedt, J. Am. Chem. Soc. 2019, 141, 2997–3005;
- 11hJ. Zhang, W. Kosaka, H. Sato, H. Miyasaka, J. Am. Chem. Soc. 2021, 143, 7021–7031.
- 12
- 12aD. Parker, E. A. Suturina, I. Kuprov, N. F. Chilton, Acc. Chem. Res. 2020, 53, 1520–1534;
- 12bG. Skorupskii, B. A. Trump, T. W. Kasel, C. M. Brown, C. H. Hendon, M. Dincă, Nat. Chem. 2020, 12, 131–136.
- 13B. Yue, X. Jin, P. Zhao, M. Zhu, L. Zhu, Small 2019, 15, 1804572.
- 14X. Guo, G. Zhu, Z. Li, F. Sun, Z. Yang, S. Qiu, Chem. Commun. 2006, 3172–3174.
- 15K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley, B. B. Yellen, Nat. Commun. 2012, 3, 794.
- 16T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, MA, 1995.
- 17D. Sun, C. M. Kareis, K. J. van Schooten, W. Jiang, G. Siegel, M. Kavand, R. A. Davidson, W. W. Shum, C. Zhang, H. Liu, A. Tiwari, C. Boehme, F. Liu, P. W. Stephens, J. S. Miller, Z. V. Vardeny, Phys. Rev. B 2017, 95, 054423.
- 18M. Mansuripur, Classical Optics and its Applications, Cambridge University Press, Cambridge, MA, 2009, pp. 166–181.
- 19M. Perfetti, M. A. Sørensen, U. B. Hansen, H. Bamberger, S. Lenz, P. P. Hallmen, T. Fennell, G. G. Simeoni, A. Arauzo, J. Bartolomé, E. Bartolomé, K. Lefmann, H. Weihe, J. van Slageren, J. Bendix, Adv. Funct. Mater. 2018, 28, 1801846.
- 20M. Briganti, G. F. Garcia, J. Jung, R. Sessoli, B. Le Guennic, F. Totti, Chem. Sci. 2019, 10, 7233–7245.
- 21J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078.
- 22
- 22aY. Han, W. Liang, X. Lin, Y. Li, F. Sun, F. Zhang, P. C. Sercel, K. Wu, Nat. Mater. 2022, 21, 1282–1289;
- 22bJ. Zhang, W. Kosaka, Y. Kitagawa, H. Miyasaka, Angew. Chem. Int. Ed. 2019, 58, 7351.
- 23
- 23aS. Petit, G. Pilet, D. luneau, L. F. Chibotaru, L. Ungur, Dalton Trans. 2007, 40, 4582–4588;
- 23bH. Zenno, F. Kobayashi, M. Nakamura, Y. Sekine, L. F. Lindoy, S. Hayami, Dalton Trans. 2021, 50, 7843–7853.
- 24J. D. H. Donnay, D. Harker, Am. Miner. 1937, 22, 446–467.
- 25T. Kimura, M. Yamato, W. Koshimizu, M. Koike, T. Kawai, Langmuir 2000, 16, 858–861.
- 26
- 26aI. Mihalcea, M. Perfetti, F. Pineider, L. Tesi, V. Mereacre, F. Wilhelm, A. Rogalev, C. E. Anson, A. K. Powell, R. Sessoli, Inorg. Chem. 2016, 55, 10068–10074;
- 26bI. Fdez Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovačević, E. Källman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J. Stein, L. K. Sørensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T. A. Wesołowski, P.-O. Widmark, S. Wouters, A. Zech, J. P. Zobel, R. Lindh, J. Chem. Theory Comput. 2019, 15, 5925–5964.
- 27Y. Wu, X. Chen, B. Su, Y. Song, L. Jiang, Adv. Funct. Mater. 2012, 22, 4569–4576.
- 28M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian, Inc, (Wallingford CT), 2009.
- 29
- 29aR. B. Ross, J. Chem. Phys. 1994, 100, 8145–8155;
- 29bP. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213–222;
- 29cL. Ungur, L. F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086;
- 29dY.-S. Meng, S.-D. Jiang, B.-W. Wang, S. Gao, Acc. Chem. Res. 2016, 49, 2381–2389.
- 30K. Bernot, J. Luzon, L. Bogani, M. Etienne, C. Sangregorio, M. Shanmugam, A. Caneschi, R. Sessoli, D. Gatteschi, J. Am. Chem. Soc. 2009, 131, 5573–5579.
- 31Deposition numbers 2251212 (for Ce-MOF), 2251213 (for Pr-MOF), 2251214 (for Nd-MOF), 2251215 (for Sm-MOF), 2251216 (for Eu-MOF), 2251217 (for Gd-MOF), 2251218 (for Tb-MOF), 2251219 (for Dy-MOF), 2251221 (for Ho-MOF), 2251222 (for Er-MOF), 2251223 (for Tm-MOF), 2251225 (for MOF), 2251229 (for [de]Eu-MOF), 2251230 (for [de]Tb-MOF), 2251231 (for Ce-MOF(Cc)), and 2251491 (for [re]Tb-MOF) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.