Assembling a Heterobimetallic Actinide Metal-Organic Framework by a Reaction-Induced Preorganization Strategy
Sen Mei
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorLixi Chen
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorHailong Zhang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorZhiwei Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorLiwei Cheng
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJunhao Lu
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaoqi Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorQian Yang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yanlong Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorZhiyong Liu
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Zhifang Chai
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorSen Mei
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorLixi Chen
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorHailong Zhang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorZhiwei Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorLiwei Cheng
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJunhao Lu
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiaoqi Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorQian Yang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yanlong Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorZhiyong Liu
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorProf. Zhifang Chai
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGraphical Abstract
Benefiting from the unique architecture of the largest-unit-cell thorium metal–organic framework (MOF), a second actinide, uranyl, with dintinct coordination behaviour was successfully assembled into the framework via a novel reaction-induced preorganization strategy to yield a rare single crystalline heterobimetallic actinide MOF.
Abstract
Periodically arranging coordination-distinct actinides into one crystalline architecture is intriguing but of great synthetic challenge. We report a rare example of a heterobimetallic actinide metal–organic framework (An-MOF) by a unique reaction-induced preorganization strategy. A thorium MOF (SCU-16) with the largest unit cell among all Th-MOFs was prepared as the precursor, then the uranyl was precisely embedded into the MOF precursor under oxidation condition. Single crystal of the resulting thorium-uranium MOF (SCU-16-U) shows that a uranyl-specific site was in situ induced by the formate-to-carbonate oxidation reaction. The heterobimetallic SCU-16-U exhibits multifunction catalysis properties derived from two distinct actinides. The strategy proposed here offers a new avenue to create mixed-actinide functional material with unique architecture and versatile functionality.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202306360-sup-0001-misc_information.pdf5.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Lv, S. Fichter, M. Gu, J. März, M. Schmidt, Coord. Chem. Rev. 2021, 446, 214011;
- 1bK. C. Park, C. R. Martin, G. A. Leith, G. C. Thaggard, G. R. Wilson, B. J. Yarbrough, B. K. P. Maldeni Kankanamalage, P. Kittikhunnatham, A. Mathur, I. Jatoi, M. A. Manzi, J. Lim, I. Lehman-Andino, A. Hernandez-Jimenez, J. W. Amoroso, D. P. DiPrete, Y. Liu, J. Schaeperkoetter, S. T. Misture, S. R. Phillpot, S. Hu, Y. Li, A. Leydier, V. Proust, A. Grandjean, M. D. Smith, N. B. Shustova, J. Am. Chem. Soc. 2022, 144, 16139–16149;
- 1cE. A. Dolgopolova, A. M. Rice, N. B. Shustova, Chem. Commun. 2018, 54, 6472–6483;
- 1dT. E. Albrecht-Schmitt, Inorg. Chem. 2019, 58, 1721–1723.
- 2
- 2aS. E. Gilson, M. Fairley, P. Julien, A. G. Oliver, S. L. Hanna, G. Arntz, O. K. Farha, J. A. LaVerne, P. C. Burns, J. Am. Chem. Soc. 2020, 142, 13299–13304;
- 2bJ. Andreo, E. Priola, G. Alberto, P. Benzi, D. Marabello, D. M. Proserpio, C. Lamberti, E. Diana, J. Am. Chem. Soc. 2018, 140, 14144–14149;
- 2cL. Feng, J. Pang, P. She, J. L. Li, J. S. Qin, D. Y. Du, H. C. Zhou, Adv. Mater. 2020, 32, 2004414.
- 3
- 3aE. A. Dolgopolova, O. A. Ejegbavwo, C. R. Martin, M. D. Smith, W. Setyawan, S. G. Karakalos, C. H. Henager, H. C. Zur Loye, N. B. Shustova, J. Am. Chem. Soc. 2017, 139, 16852–16861;
- 3bC. R. Martin, G. A. Leith, N. B. Shustova, Chem. Sci. 2021, 12, 7214–7230.
- 4
- 4aY. Wang, Y. Li, Z. Bai, C. Xiao, Z. Liu, W. Liu, L. Chen, W. He, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, Dalton Trans. 2015, 44, 18810–18814;
- 4bK. C. Park, P. Kittikhunnatham, J. Lim, G. C. Thaggard, Y. Liu, C. R. Martin, G. A. Leith, D. J. Toler, A. T. Ta, N. Birkner, I. Lehman-Andino, A. Hernandez-Jimenez, G. Morrison, J. W. Amoroso, H. C. Zur Loye, D. P. DiPrete, M. D. Smith, K. S. Brinkman, S. R. Phillpot, N. B. Shustova, Angew. Chem. Int. Ed. 2023, 62, e202216349.
- 5
- 5aK. Gonda, K. Oka, K. Hayashi, Nucl. Technol. 1984, 65, 102–108;
- 5bT. Inoue, M. Sakata, H. Miyashiro, T. Matsumura, A. Sasahara, N. Yoshiki, Nucl. Technol. 1991, 93, 206–220.
- 6C. R. Martin, G. A. Leith, P. Kittikhunnatham, K. C. Park, O. A. Ejegbavwo, A. Mathur, C. R. Callahan, S. L. Desmond, M. R. Keener, F. Ahmed, S. Pandey, M. D. Smith, S. R. Phillpot, A. B. Greytak, N. B. Shustova, Angew. Chem. Int. Ed. 2021, 60, 8072–8080.
- 7J. Diwu, S. Wang, J. J. Good, V. H. DiStefano, T. E. Albrecht-Schmitt, Inorg. Chem. 2011, 50, 4842–4850.
- 8
- 8aS. M. Cohen, J. Am. Chem. Soc. 2017, 139, 2855–2863;
- 8bY. Chen, S. Ahn, M. R. Mian, X. Wang, Q. Ma, F. A. Son, L. Yang, K. Ma, X. Zhang, J. M. Notestein, O. K. Farha, J. Am. Chem. Soc. 2022, 144, 3554–3563;
- 8cY. Chen, X. Zhang, X. Wang, R. J. Drout, M. R. Mian, R. Cao, K. Ma, Q. Xia, Z. Li, O. K. Farha, J. Am. Chem. Soc. 2021, 143, 4302–4310.
- 9
- 9aH. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuno, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2016, 138, 14720–14726;
- 9bA. Schoedel, M. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2016, 116, 12466–12535.
- 10
- 10aR. E. Sikma, N. Katyal, S. K. Lee, J. W. Fryer, C. G. Romero, S. K. Emslie, E. L. Taylor, V. M. Lynch, J. S. Chang, G. Henkelman, S. M. Humphrey, J. Am. Chem. Soc. 2021, 143, 13710–13720;
- 10bW. Y. Zhang, Y. J. Lin, Y. F. Han, G. X. Jin, J. Am. Chem. Soc. 2016, 138, 10700–10707;
- 10cM. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 2019, 58, 15188–15205.
- 11
- 11aH. Wang, Z. Shi, J. Yang, T. Sun, B. Rungtaweevoranit, H. Lyu, Y. B. Zhang, O. M. Yaghi, Angew. Chem. Int. Ed. 2021, 60, 3417–3421;
- 11bS. Yuan, J. S. Qin, J. Su, B. Li, J. Li, W. Chen, H. F. Drake, P. Zhang, D. Yuan, J. Zuo, H. C. Zhou, Angew. Chem. Int. Ed. 2018, 57, 12578–12583;
- 11cQ. Mo, L. Zhang, S. Li, H. Song, Y. Fan, C. Y. Su, J. Am. Chem. Soc. 2022, 144, 22747–22758;
- 11dA. M. Shultz, A. A. Sarjeant, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2011, 133, 13252–13255.
- 12S. Pandey, B. Demaske, O. A. Ejegbavwo, A. A. Berseneva, W. Setyawan, N. Shustova, S. R. Phillpot, Comput. Mater. Sci. 2020, 184, 109903.
- 13
- 13aO. A. Ejegbavwo, C. R. Martin, O. A. Olorunfemi, G. A. Leith, R. T. Ly, A. M. Rice, E. A. Dolgopolova, M. D. Smith, S. G. Karakalos, N. Birkner, B. A. Powell, S. Pandey, R. J. Koch, S. T. Misture, H. Z. Loye, S. R. Phillpot, K. S. Brinkman, N. B. Shustova, J. Am. Chem. Soc. 2019, 141, 11628–11640;
- 13bK. Lv, C. Urbank, M. Patzschke, J. Marz, P. Kaden, S. Weiss, M. Schmidt, J. Am. Chem. Soc. 2022, 144, 2879–2884.
- 14
- 14aE. G. Meekel, E. M. Schmidt, L. J. Cameron, A. D. Dharma, H. J. Windsor, S. G. Duyker, A. Minelli, T. Pope, G. O. Lepore, B. Slater, C. J. Kepert, A. L. Goodwin, Science 2023, 379, 357–361;
- 14bN. Alsadun, G. Mouchaham, V. Guillerm, J. Czaban-Jozwiak, A. Shkurenko, H. Jiang, P. M. Bhatt, P. Parvatkar, M. Eddaoudi, J. Am. Chem. Soc. 2020, 142, 20547–20553.
- 15Y.-S. Wei, K.-J. Chen, P.-Q. Liao, B.-Y. Zhu, R.-B. Lin, H.-L. Zhou, B.-Y. Wang, W. Xue, J.-P. Zhang, X.-M. Chen, Chem. Sci. 2013, 4, 1539–1546.
- 16N. Zhang, L.-X. Sun, Y.-H. Xing, F.-Y. Bai, Cryst. Growth Des. 2019, 19, 5686–5695.
- 17Z. J. Li, X. Guo, J. Qiu, H. Lu, J. Q. Wang, J. Lin, Dalton Trans. 2022, 51, 7376–7389.
- 18The nbo-x page from the RCSR database at http://rcsr.net/nets/nbo-x.
- 19F. T. Edelmann, Coord. Chem. Rev. 2017, 338, 27–140.
- 20T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, Coord. Chem. Rev. 2014, 266–267, 69–109.
- 21M. Zhang, C. Liang, G. D. Cheng, J. Chen, Y. Wang, L. He, L. Cheng, S. Gong, D. Zhang, J. Li, S. X. Hu, J. Diwu, G. Wu, Y. Wang, Z. Chai, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 9886–9890.
- 22D. Hu, X. Jiang, Synlett 2021, 32, 1330–1342.
- 23D. Hu, X. Jiang, Green Chem. 2022, 24, 124–129.
- 24H. Xu, C. S. Cao, H. S. Hu, S. B. Wang, J. C. Liu, P. Cheng, N. Kaltsoyannis, J. Li, B. Zhao, Angew. Chem. Int. Ed. 2019, 58, 6022–6027.
- 25Deposition Numbers 2442052 (for SCU-16) and 2442259 (for SCU-16-U) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.