Impact of Electrostatic Interaction on Non-radiative Recombination Energy Losses in Organic Solar Cells Based on Asymmetric Acceptors
Yongjie Cui
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Writing - original draft (lead)
Search for more papers by this authorDr. Peipei Zhu
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Huawei Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorXinxin Xia
Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077 China
Contribution: Data curation (supporting)
Search for more papers by this authorProf. Xinhui Lu
Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorDr. Shicheng Yu
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorDr. Hermann Tempeld
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Rüdiger-A. Eichel
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xunfan Liao
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Formal analysis (equal), Supervision (equal), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Conceptualization (equal), Supervision (equal)
Search for more papers by this authorYongjie Cui
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Conceptualization (equal), Data curation (lead), Formal analysis (equal), Writing - original draft (lead)
Search for more papers by this authorDr. Peipei Zhu
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Huawei Hu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorXinxin Xia
Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077 China
Contribution: Data curation (supporting)
Search for more papers by this authorProf. Xinhui Lu
Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorDr. Shicheng Yu
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorDr. Hermann Tempeld
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorProf. Rüdiger-A. Eichel
Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, 52425 Jülich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xunfan Liao
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Formal analysis (equal), Supervision (equal), Writing - original draft (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
Contribution: Conceptualization (equal), Supervision (equal)
Search for more papers by this authorGraphical Abstract
Two asymmetric acceptors, BTP-Cl and BTP-2Cl, were developed to study the relationship between the energy loss mechanism and molecular structure. The results demonstrate that the decreased surface electrostatic potential difference between asymmetric acceptor and donor reduces the charge transfer state ratio, thereby suppressing the non-radiative recombination energy loss.
Abstract
Reducing non-radiative recombination energy loss (ΔE3) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3, the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π–π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3. This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202304931-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Zhang, F. R. Lin, F. Qi, T. Heumuller, A. Distler, H. J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K. Jen, H. L. Yip, Chem. Rev. 2022, 122, 14180–14274.
- 2C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605–613.
- 3X. Meng, Z. Xing, X. Hu, Y. Chen, Chin. J. Polym. Sci. 2022, 40, 1522–1566.
- 4L. Zhan, S. Li, Y. Li, R. Sun, J. Min, Y. Chen, J. Fang, C. Q. Ma, G. Zhou, H. Zhu, L. Zuo, H. Qiu, S. Yin, H. Chen, Adv. Energy Mater. 2022, 12, 2201076.
- 5C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 2537–2544.
- 6L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656–663.
- 7B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, Y. Cao, Nat. Energy 2018, 3, 1051–1058.
- 8Z. Luo, R. Ma, J. Yu, H. Liu, T. Liu, F. Ni, J. Hu, Y. Zou, A. Zeng, C. J. Su, U. S. Jeng, X. Lu, F. Gao, C. Yang, H. Yan, Natl. Sci. Rev. 2022, 9, nwac076.
- 9K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Nat. Mater. 2009, 8, 904–909.
- 10W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148–7151.
- 11J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151.
- 12G. Zhang, X. K. Chen, J. Xiao, P. C. Y. Chow, M. Ren, G. Kupgan, X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, J. Yuan, Y. Zhang, S. Zhang, Y. Liu, Y. Zou, H. Yan, K. S. Wong, V. Coropceanu, N. Li, C. J. Brabec, J. L. Bredas, H. L. Yip, Y. Cao, Nat. Commun. 2020, 11, 3943.
- 13C. Li, H. Fu, T. Xia, Y. Sun, Adv. Energy Mater. 2019, 9, 1900999.
- 14Z.-P. Yu, X. Li, C. He, D. Wang, R. Qin, G. Zhou, Z.-X. Liu, T. R. Andersen, H. Zhu, H. Chen, C.-Z. Li, Chin. Chem. Lett. 2020, 31, 1991–1996.
- 15C. He, Z. Bi, Z. Chen, J. Guo, X. Xia, X. Lu, J. Min, H. Zhu, W. Ma, L. Zuo, H. Chen, Adv. Funct. Mater. 2022, 32, 2112511.
- 16Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, H. Yan, Joule 2020, 4, 1236–1247.
- 17Y. Xu, H. Yao, L. Ma, L. Hong, J. Li, Q. Liao, Y. Zu, J. Wang, M. Gao, L. Ye, J. Hou, Angew. Chem. Int. Ed. 2020, 132, 9089–9095.
- 18L. Ma, H. Yao, J. Wang, Y. Xu, M. Gao, Y. Zu, Y. Cui, S. Zhang, L. Ye, J. Hou, Angew. Chem. Int. Ed. 2021, 60, 15988–15994.
- 19Y. Cui, P. Zhu, X. Liao, Y. Chen, J. Mater. Chem. C 2020, 8, 15920–15939.
- 20X. Liao, Q. Xie, Y. Guo, Q. He, Z. Chen, N. Yu, P. Zhu, Y. Cui, Z. Ma, X. Xu, H. Zhu, Y. Chen, Energy Environ. Sci. 2022, 15, 384–394.
- 21H. Yao, Y. Cui, D. Qian, C. S. Ponseca, A. Honarfar, Y. Xu, J. Xin, Z. Chen, L. Hong, B. Gao, R. Yu, Y. Zu, W. Ma, P. Chabera, T. Pullerits, A. Yartsev, F. Gao, J. Hou, J. Am. Chem. Soc. 2019, 141, 7743–7750.
- 22R. G. Surbella, L. C. Ducati, K. L. Pellegrini, B. K. McNamara, J. Autschbach, J. M. Schwantes, C. L. Cahill, J. Am. Chem. Soc. 2017, 139, 10843–10855.
- 23X. Li, Q. Zhang, J. Yu, Y. Xu, R. Zhang, C. Wang, H. Zhang, S. Fabiano, X. Liu, J. Hou, F. Gao, M. Fahlman, Nat. Commun. 2022, 13, 2046.
- 24Z. Tu, G. Han, Y. Yi, J. Phys. Chem. Lett. 2020, 11, 2585–2591.
- 25J. S. Murray, P. Politzer, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 153–163.
- 26T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 27X. Jing, X. Kang, Q. Wang, Y. Zhao, X. Wang, L. Yu, M. Sun, Chem. Eng. J. 2022, 446, 137209.
- 28Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461–467.
- 29X. Tang, L. S. Cui, H. C. Li, A. J. Gillett, F. Auras, Y. K. Qu, C. Zhong, S. T. E. Jones, Z. Q. Jiang, R. H. Friend, L. S. Liao, Nat. Mater. 2020, 19, 1332–1338.
- 30X. Liao, W. Xie, Z. Han, Y. Cui, X. Xia, X. Shi, Z. Yao, X. Xu, X. Lu, Y. Chen, Adv. Funct. Mater. 2022, 32, 2204255.
- 31Y. Cui, P. Zhu, X. Shi, X. Liao, Y. Chen, J. Phys. Chem. C 2021, 125, 10250–10259.
- 32L. Zhu, M. Zhang, G. Zhou, T. Hao, J. Xu, J. Wang, C. Qiu, N. Prine, J. Ali, W. Feng, X. Gu, Z. Ma, Z. Tang, H. Zhu, L. Ying, Y. Zhang, F. Liu, Adv. Energy Mater. 2020, 10, 1904234.
- 33E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506.
- 34N. Yi, Q. Ai, W. Zhou, L. Huang, L. Zhang, Z. Xing, X. Li, J. Zeng, Y. Chen, Chem. Mater. 2019, 31, 10211–10224.
- 35J. Xu, J. Zhang, D. Yang, K. Yu, D. Li, Z. Xia, Z. Ge, Chin. Chem. Lett. 2022, 33, 247–251.
- 36L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng, X. Chen, D. Yu, S. Li, G. Lu, Adv. Electron. Mater. 2016, 2, 1600359.
- 37K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou, X. Feng, G. Lu, S. Tan, F. Liu, Y. Sun, Nat. Commun. 2020, 11, 2855.
- 38J. Xu, S. B. Jo, X. Chen, G. Zhou, M. Zhang, X. Shi, F. Lin, L. Zhu, T. Hao, K. Gao, Y. Zou, X. Su, W. Feng, A. K. Jen, Y. Zhang, F. Liu, Adv. Mater. 2022, 34, 2108317.
- 39W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang, J. Hou, F. Liu, S. Xu, X. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202116111.
- 40J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue, Y. Song, Z. Du, M. Ren, F. Huang, Adv. Energy Mater. 2022, 12, 2200453.
- 41I. Zonno, A. Martinez-Otero, J.-C. Hebig, T. Kirchartz, Phys. Rev. Appl. 2017, 7, 034018.
- 42W. Chen, S. Liu, Q. Li, Q. Cheng, B. He, Z. Hu, Y. Shen, H. Chen, G. Xu, X. Ou, H. Yang, J. Xi, Y. Li, Y. Li, Adv. Mater. 2022, 34, 2110482.
- 43Q. He, W. Sheng, M. Zhang, G. Xu, P. Zhu, H. Zhang, Z. Yao, F. Gao, F. Liu, X. Liao, Y. Chen, Adv. Energy Mater. 2021, 11, 2003390.
- 44Z. Wang, Y. Hu, T. Xiao, Y. Zhu, X. Chen, L. Bu, Y. Zhang, Z. Wei, B. B. Xu, G. Lu, Adv. Opt. Mater. 2019, 7, 1900152.
- 45D. Qian, Z. Zheng, H. Yao, W. Tress, T. R. Hopper, S. Chen, S. Li, J. Liu, S. Chen, J. Zhang, X. K. Liu, B. Gao, L. Ouyang, Y. Jin, G. Pozina, I. A. Buyanova, W. M. Chen, O. Inganäs, V. Coropceanu, J. L. Bredas, H. Yan, J. Hou, F. Zhang, A. A. Bakulin, F. Gao, Nat. Mater. 2018, 17, 703–709.
- 46L. Zhang, H. Mao, L. Huang, L. Hu, X. Wang, L. Tan, Y. Chen, Sci. China Chem. 2022, 65, 1623–1633.
- 47G. Xu, H. Rao, X. Liao, Y. Zhang, Y. Wang, Z. Xing, T. Hu, L. Tan, L. Chen, Y. Chen, Chin. J. Chem. 2020, 38, 1553–1559.
- 48F. D. Eisner, M. Azzouzi, Z. Fei, X. Hou, T. D. Anthopoulos, T. J. S. Dennis, M. Heeney, J. Nelson, J. Am. Chem. Soc. 2019, 141, 6362–6374.
- 49X. K. Chen, V. Coropceanu, J. L. Bredas, Nat. Commun. 2018, 9, 5295.
- 50A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. v. Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R. H. Friend, Science 2012, 335, 1340–1344.
- 51Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205.
- 52Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.