MXene-Regulated Metal-Oxide Interfaces with Modified Intermediate Configurations Realizing Nearly 100% CO2 Electrocatalytic Conversion
Yanan Hao
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Feng Hu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorShangqian Zhu
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077 Kowloon, Hong Kong, China
These authors contributed equally to this work.
Search for more papers by this authorYajie Sun
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorHui Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorLuqi Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorYing Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Jianjun Xue
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorDr. Yen-Fa Liao
National Synchrotron Radiation Research Center, Hsinchu, 300 Taiwan
Search for more papers by this authorProf. Minhua Shao
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077 Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Shengjie Peng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorYanan Hao
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Feng Hu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorShangqian Zhu
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077 Kowloon, Hong Kong, China
These authors contributed equally to this work.
Search for more papers by this authorYajie Sun
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorHui Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorLuqi Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorYing Wang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Jianjun Xue
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorDr. Yen-Fa Liao
National Synchrotron Radiation Research Center, Hsinchu, 300 Taiwan
Search for more papers by this authorProf. Minhua Shao
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 999077 Kowloon, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Shengjie Peng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorGraphical Abstract
Highly efficient electrocatalytic reduction of CO2 to CO is achieved by Ag nanodomains loaded on ZnO porous nanobelts coupled with high electronic conductivity MXene (Ag−ZnO/Ti3C2Tx). The unique Ti3C2Tx-regulated Ag−ZnO interfaces can modulate the formation and configuration of *CO intermediates (eg. linear- or bridge-bonded CO), which is suitable for highly selective and efficient electrochemical CO2 reduction (eCO2R).
Abstract
Electrocatalytic CO2 reduction via renewable electricity provides a sustainable way to produce valued chemicals, while it suffers from low activity and selectivity. Herein, we constructed a novel catalyst with unique Ti3C2Tx MXene-regulated Ag−ZnO interfaces, undercoordinated surface sites, as well as mesoporous nanostructures. The designed Ag−ZnO/Ti3C2Tx catalyst achieves an outstanding CO2 conversion performance of a nearly 100% CO Faraday efficiency with high partial current density of 22.59 mA cm−2 at −0.87 V versus reversible hydrogen electrode. The electronic donation of Ag and up-shifted d-band center relative to Fermi level within MXene-regulated Ag−ZnO interfaces contributes the high selectivity of CO. The CO2 conversion is highly correlated with the dominated linear-bonded CO intermediate confirmed by in situ infrared spectroscopy. This work enlightens the rational design of unique metal-oxide interfaces with the regulation of MXene for high-performance electrocatalysis beyond CO2 reduction.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202304179-sup-0001-misc_information.pdf5.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Science 2021, 373, 1523–1527;
- 1bH. Zhou, Z. Chen, A. V. López, E. D. López, E. Lam, A. Tsoukalou, E. Willinger, D. A. Kuznetsov, D. Mance, A. Kierzkowska, F. Donat, P. M. Abdala, A. Comas-Vives, C. Copéret, A. Fedorov, C. R. Müller, Nat. Catal. 2021, 4, 860–871;
- 1cZ. Liang, L. Song, M. Sun, B. Huang, D. Y., Sci. Adv. 2021, 7, 4915;
- 1dY. Song, K. Ji, H. Duan, M. Shao, Exploration 2021, 1, 20210050;
- 1eY. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang, X. Wang, Y. Yan, B. Y. Xia, Nano-Micro Lett. 2021, 13, 137;
- 1fS. Zaman, X. Tian, Y. Q. Su, W. Cai, Y. Yan, R. Qi, A. I. Douka, S. Chen, B. You, H. Liu, S. Ding, X. Guo, B. Y. Xia, Sci. Bull. 2021, 66, 2207–2216;
- 1gL. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao, L. Li, S. Peng, Nat. Commun. 2022, 13, 5785;
- 1hJ. Wang, X. Zheng, G. Wang, Y. Cao, W. Ding, J. Zhang, H. Wu, J. Ding, H. Hu, X. Han, T. Ma, Y. Deng, W. Hu, Adv. Mater. 2022, 34, 2106354.
- 2
- 2aH. Zhong, M. Ghorbani-Asl, K. H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I. M. Weidinger, J. Zhang, A. V. Krasheninnikov, S. Kaskel, R. Dong, X. Feng, Nat. Commun. 2020, 11, 1409;
- 2bF. Hu, S. C. Abeyweera, J. Yu, D. Zhang, Y. Wang, Q. Yan, Y. Sun, Chem 2020, 6, 3007–3021;
- 2cD. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res. 2018, 51, 910–918;
- 2dY. Zhai, P. Han, Q. Yun, Y. Ge, X. Zhang, Y. Chen, H. Zhang, eScience 2022, 2, 467–485;
- 2eZ. Zhang, J. Zhu, S. Chen, W. Sun, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215136;
- 2fZ. Ren, F. Chen, Q. Zhao, G. Zhao, H. Li, W. Sun, H. Huang, T. Ma, Appl. Catal. B 2023, 320, 122007.
- 3
- 3aK. Liu, J. Wang, M. Shi, J. Yan, Q. Jiang, Adv. Energy Mater. 2019, 9, 1900276;
- 3bJ. Wang, G. Wang, J. Zhang, Y. Wang, H. Wu, X. Zheng, J. Ding, X. Han, Y. Deng, W. Hu, Angew. Chem. Int. Ed. 2021, 60, 7602–7606;
- 3cS. Bai, H. Qiu, M. Song, G. He, F. Wang, Y. Liu, L. Guo, eScience 2022, 2, 428–437;
- 3dD. Xu, K. Li, B. Jia, W. Sun, W. Zhang, X. Liu, T. Ma, Carbon Energy 2023, 5, e230;
- 3eG. Wang, Z. Chen, T. Wang, D. Wang, J. Mao, Angew. Chem. Int. Ed. 2022, 61, e202210789.
- 4
- 4aM. Y. Lee, K. T. Park, W. Lee, H. Lim, Y. Kwon, S. Kang, Crit. Rev. Environ. Sci. Technol. 2020, 50, 769–815;
- 4bR. Daiyan, E. C. Lovell, B. Huang, M. Zubair, J. Leverett, Q. Zhang, S. Lim, J. Horlyck, J. Tang, X. Lu, K. Kalantar-Zadeh, J. N. Hart, N. M. Bedford, R. Amal, Adv. Energy Mater. 2020, 10, 2001381;
- 4cY. Chen, F. Hu, Y. Hao, Y. Wang, Y. Xie, H. Wang, L. Yin, D. Yu, H. Yang, J. Ma, D. Kai, L. Li, S. Peng, Nano Res. 2022, 15, 3283–3289;
- 4dK. Wang, D. Liu, L. Liu, J. Liu, X. Hu, P. Li, M. Li, A. S. Vasenko, C. Xiao, S. Ding, eScience 2022, 2, 518–528;
- 4eW. Huang, Y. Wang, J. Liu, Y. Wang, D. Liu, J. Dong, N. Jia, L. Yang, C. Liu, Z. Liu, B. Liu, Q. Yan, Small 2022, 18, 2107885;
- 4fF. Liu, X. Ren, J. Zhao, H. Wu, J. Wang, X. Han, Y. Deng, W. Hu, ACS Catal. 2022, 12, 13533–13541.
- 5N. Hoshi, M. Kato, Y. Hori, J. Electroanal. Chem. 1997, 440, 283–286.
- 6
- 6aA. Salehi-Khojin, H. R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis, R. I. Masel, J. Phys. Chem. C 2013, 117, 1627–1632;
- 6bH. Mistry, Y. W. Choi, A. Bagger, F. Scholten, C. S. Bonifacio, I. Sinev, N. J. Divins, I. Zegkinoglou, H. S. Jeon, K. Kisslinger, E. A. Stach, J. C. Yang, J. Rossmeisl, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2017, 56, 11394–11398;
- 6cM. Ma, B. J. Trzesniewski, J. Xie, W. A. Smith, Angew. Chem. Int. Ed. 2016, 55, 9748–9752.
- 7Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242.
- 8Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, Z. Bai, A. Yu, Z. Chen, J. Am. Chem. Soc. 2021, 143, 6855–6864.
- 9
- 9aL. Han, X. Peng, H. T. Wang, P. Ou, Y. Mi, C. W. Pao, J. Zhou, J. Wang, X. Liu, W. F. Pong, J. Song, Z. Lin, J. Luo, H. L. Xin, Proc. Natl. Acad. Sci. USA 2022, 119, e2207326119;
- 9bA. D. Handoko, K. H. Khoo, T. L. Tan, H. Jin, Z. W. Seh, J. Mater. Chem. A 2018, 6, 21885–21890.
- 10
- 10aQ. H. Low, N. W. X. Loo, F. Calle-Vallejo, B. S. Yeo, Angew. Chem. Int. Ed. 2019, 58, 2256–2260;
- 10bS. Lamaison, D. Wakerley, J. Blanchard, D. Montero, G. Rousse, D. Mercier, P. Marcus, D. Taverna, D. Giaume, V. Mougel, M. Fontecave, Joule 2020, 4, 395–406;
- 10cM. Chen, S. Wan, L. Zhong, D. Liu, H. Yang, C. Li, Z. Huang, C. Liu, J. Chen, H. Pan, D. S. Li, S. Li, Q. Yan, B. Liu, Angew. Chem. Int. Ed. 2021, 60, 26233–26237.
- 11S. Zhu, E. P. Delmo, T. Li, X. Qin, J. Tian, L. Zhang, M. Shao, Adv. Mater. 2021, 33, 2005484.
- 12
- 12aK. Sun, K. Yu, J. Fang, Z. Zhuang, X. Tan, Y. Wu, L. Zeng, Z. Zhuang, Y. Pan, C. Chen, Adv. Mater. 2022, 34, 2206478;
- 12bX. Qin, S. Zhu, F. Xiao, L. Zhang, M. Shao, ACS Energy Lett. 2019, 4, 1778–1783.
- 13
- 13aS. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B. Lee, L. Zhang, Y. Yao, T. Li, M. Shao, Adv. Energy Mater. 2018, 8, 1802238;
- 13bS. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682–689;
- 13cT. C. Chou, C. C. Chang, H. L. Yu, W. Y. Yu, C. L. Dong, J. J. Velasco-Velez, C. H. Chuang, L. C. Chen, J. F. Lee, J. M. Chen, H. L. Wu, J. Am. Chem. Soc. 2020, 142, 2857–2867;
- 13dC. M. Gunathunge, V. J. Ovalle, Y. Li, M. J. Janik, M. M. Waegele, ACS Catal. 2018, 8, 7507–7516.
- 14
- 14aL. Li, D. Yu, P. Li, H. Huang, D. Xie, C.-C. Lin, F. Hu, H.-Y. Chen, S. Peng, Energy Environ. Sci. 2021, 14, 6419–6427;
- 14bN. Li, X. Chen, W. J. Ong, D. R. MacFarlane, X. Zhao, A. K. Cheetham, C. Sun, ACS Nano 2017, 11, 10825–10833.
- 15
- 15aB. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759–19770;
- 15bZ. Li, M. Saruyama, T. Asaka, Y. Tatetsu, T. Teranishi, Science 2021, 373, 332–337;
- 15cZ. Guo, M. Q. Li, J. H. Liu, X. J. Huang, Small 2015, 11, 6285–6294.
- 16Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Adv. Funct. Mater. 2021, 31, 2102576.
- 17
- 17aJ. Tang, T. S. Mathis, N. Kurra, A. Sarycheva, X. Xiao, M. N. Hedhili, Q. Jiang, H. N. Alshareef, B. Xu, F. Pan, Y. Gogotsi, Angew. Chem. Int. Ed. 2019, 58, 17849–17855;
- 17bM. X. Ma, X. L. Ma, G. M. Liang, X. T. Shen, Q. L. Ni, L. C. Gui, X. J. Wang, S. Y. Huang, S. M. Li, J. Am. Chem. Soc. 2021, 143, 13731–13737.
- 18
- 18aD. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma, Y. Nie, M. Li, X. Weng, R. Huang, Y. Zhao, L. Shui, X. Wang, Z. Chen, Adv. Mater. 2022, 34, 2105541;
- 18bH. Q. Fu, J. Liu, N. M. Bedford, Y. Wang, J. W. Sun, Y. Zou, M. Dong, J. Wright, H. Diao, P. Liu, H. G. Yang, H. Zhao, Adv. Mater. 2022, 34, 2202854.
- 19
- 19aM. R. Lukatskaya, S. M. Bak, X. Yu, X. Q. Yang, M. W. Barsoum, Y. Gogotsi, Adv. Energy Mater. 2015, 5, 1500589;
- 19bA. Djire, H. Zhang, B. J. Reinhart, O. C. Nwamba, N. R. Neale, ACS Catal. 2021, 11, 3128–3136.
- 20Y. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang, B. Yang, Y. Hou, L. Lei, Z. Li, R. Zhang, Y. Lu, Adv. Mater. 2021, 33, 2102212.
- 21S. Liu, C. Sun, J. Xiao, J. L. Luo, ACS Catal. 2020, 10, 3158–3163.
- 22L. Xiong, X. Zhang, H. Yuan, J. Wang, X. Yuan, Y. Lian, H. Jin, H. Sun, Z. Deng, D. Wang, J. Hu, H. Hu, J. Choi, J. Li, Y. Chen, J. Zhong, J. Guo, M. H. Rummerli, L. Xu, Y. Peng, Angew. Chem. Int. Ed. 2021, 60, 2508–2518.
- 23N. Zhang, X. Zhang, L. Tao, P. Jiang, C. Ye, R. Lin, Z. Huang, A. Li, D. Pang, H. Yan, Y. Wang, P. Xu, S. An, Q. Zhang, L. Liu, S. Du, X. Han, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 6170–6176.
- 24S. Li, S. Zhao, X. Lu, M. Ceccato, X. M. Hu, A. Roldan, J. Catalano, M. Liu, T. Skrydstrup, K. Daasbjerg, Angew. Chem. Int. Ed. 2021, 60, 22826–22832.
- 25W. Luo, W. Xie, R. Mutschler, E. Oveisi, G. L. De Gregorio, R. Buonsanti, A. Züttel, ACS Catal. 2018, 8, 6571–6581.
- 26X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y. G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Nat. Energy 2020, 5, 684–692.
- 27S. Zhu, X. Qin, Q. Wang, T. Li, R. Tao, M. Gu, M. Shao, J. Mater. Chem. A 2019, 7, 16954–16961.