Simultaneous Generation of H2O2 and Formate by Co-Electrolysis of Water and CO2 over Bifunctional Zn/SnO2 Nanodots
Xin Hu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorGuoliang Mei
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorDr. Xiangxiong Chen
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 China
Search for more papers by this authorCorresponding Author
Prof. Jinlong Liu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 China
Search for more papers by this authorCorresponding Author
Prof. Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorCorresponding Author
Prof. Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorXin Hu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorGuoliang Mei
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorDr. Xiangxiong Chen
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 China
Search for more papers by this authorCorresponding Author
Prof. Jinlong Liu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 China
Search for more papers by this authorCorresponding Author
Prof. Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorCorresponding Author
Prof. Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorGraphical Abstract
An innovative pair-electrosynthesis system for the coproduction of H2O2 and formate was constructed with the bifunctional electrocatalyst Zn/SnO2 nanodots, achieving high selectivities and excellent productivities at large current densities. The role of the Zn dopant was revealed by density functional theory (DFT) calculations and (quasi)-in situ characterizations.
Abstract
Hydrogen peroxide (H2O2) and formate are important chemicals used in various chemical manufacturing industries. One promising approach for the simultaneous production of these chemicals is coupling anodic two-electron water oxidation with cathodic CO2 reduction in an electrolyzer using nonprecious bifunctional electrocatalysts. Herein, we report an innovative hybrid electrosynthesis strategy using Zn-doped SnO2 (Zn/SnO2) nanodots as bifunctional redox electrocatalysts to achieve Faradaic efficiencies of 80.6 % and 92.2 % for H2O2 and formate coproduction, respectively, along with excellent stability for at least 60 h at a current density of ≈150 mA cm−2. Through a combination of physicochemical characterizations, including operando attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), isotope labeling mass spectrometry (MS)/1H NMR and quasi-in situ electron paramagnetic resonance (EPR), with density functional theory (DFT) calculations, we discovered that the Zn dopant facilitates the coupling of *OH intermediates to promote H2O2 production and optimizes the adsorption of *OCHO intermediates to accelerate formate formation. Our findings offer new insights into designing more efficient bifunctional electrocatalyst-based pair-electrosynthesis system for the coproduction of H2O2 and formate feedstocks.
Conflict of interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202304050-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Zhou, J. Shan, L. Chen, B. Y. Xia, T. Ling, J. Duan, Y. Jiao, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2022, 144, 2079–2084;
- 1bS. Overa, B. S. Crandall, B. Shrimant, D. Tian, B. H. Ko, H. Shin, C. Bae, F. Jiao, Nat. Catal. 2022, 5, 738–745;
- 1cD. Zhong, Z. J. Zhao, Q. Zhao, D. Cheng, B. Liu, G. Zhang, W. Deng, H. Dong, L. Zhang, J. Li, J. Li, J. Gong, Angew. Chem. Int. Ed. 2021, 60, 4879–4885;
- 1dM. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Angew. Chem. Int. Ed. 2021, 60, 10910–10918;
- 1eJ. Wei, R. Yao, Y. Han, Q. Ge, J. Sun, Chem. Soc. Rev. 2021, 50, 10764–10805;
- 1fX. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong, G. Wang, L. Xiao, J. Lu, L. Zhuang, ACS Catal. 2020, 10, 4103–4111.
- 2
- 2aT. Ma, Z. Wu, H. Wu, W. Cai, Z. Wen, L. Wang, W. Jin, B. Jia, Angew. Chem. Int. Ed. 2021, 60, 12554–12558;
- 2bZ. Li, A. Cao, Q. Zheng, Y. Fu, T. Wang, K. T. Arul, J. L. Chen, B. Yang, N. M. Adli, L. Lei, C. L. Dong, J. Xiao, G. Wu, Y. Hou, Adv. Mater. 2021, 33, 2005113;
- 2cL.-P. Chi, Z.-Z. Niu, X.-L. Zhang, P.-P. Yang, J. Liao, F.-Y. Gao, Z.-Z. Wu, K.-B. Tang, M.-R. Gao, Nat. Commun. 2021, 12, 5835;
- 2dY. Cheng, J. Hou, P. Kang, ACS Energy Lett. 2021, 6, 3352–3358;
- 2eS. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem. Int. Ed. 2019, 58, 8499–8503.
- 3
- 3aY. Li, J. Chen, S. Chen, X. Liao, T. Zhao, F. Cheng, H. Wang, ACS Energy Lett. 2022, 7, 1454–1461;
- 3bJ. Duan, T. Liu, Y. Zhao, R. Yang, Y. Zhao, W. Wang, Y. Liu, H. Li, Y. Li, T. Zhai, Nat. Commun. 2022, 13, 2039;
- 3cY. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y. R. Lu, M. Peng, T. S. Chan, Y. Tan, Nano Lett. 2021, 21, 6907–6913;
- 3dY. Qi, J. Jiang, X. Liang, S. Ouyang, W. Mi, S. Ning, L. Zhao, J. Ye, Adv. Funct. Mater. 2021, 31, 2100908;
- 3eY. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang, B. Yang, Y. Hou, L. Lei, Z. Li, R. Zhang, Y. Lu, Adv. Mater. 2021, 33, 2102212.
- 4
- 4aL. Han, X. Peng, H. T. Wang, P. Ou, Y. Mi, C. W. Pao, J. Zhou, J. Wang, X. Liu, W. F. Pong, J. Song, Z. Lin, J. Luo, H. L. Xin, Proc. Natl. Acad. Sci. USA 2022, 119, e2207326119;
- 4bH. Yang, Y. Huang, J. Deng, Y. Wu, N. Han, C. Zha, L. Li, J. Energy Chem. 2019, 37, 93–96;
- 4cS. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang, T. K. Sham, Q. Han, G. Zheng, Angew. Chem. Int. Ed. 2021, 60, 25741–25745.
- 5
- 5aM. K. Kim, H. Lee, J. H. Won, W. Sim, S. J. Kang, H. Choi, M. Sharma, H. S. Oh, S. Ringe, Y. Kwon, H. M. Jeong, Adv. Funct. Mater. 2022, 32, 2107349;
- 5bW. Guo, S. Liu, X. Tan, R. Wu, X. Yan, C. Chen, Q. Zhu, L. Zheng, J. Ma, J. Zhang, Y. Huang, X. Sun, B. Han, Angew. Chem. Int. Ed. 2021, 60, 21979–21987;
- 5cM. Gu, Y. Li, M. Zhang, X. Zhang, Y. Shen, Y. Liu, F. Dong, Nano Energy 2021, 80, 105415;
- 5dK. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2020, 59, 4814–4821.
- 6
- 6aB. You, X. Liu, X. Liu, Y. Sun, ACS Catal. 2017, 7, 4564–4570;
- 6bB. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc. 2016, 138, 13639–13646;
- 6cB. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 2016, 55, 9913–9917;
- 6dB. You, G. Han, Y. Sun, Chem. Commun. 2018, 54, 5943–5955;
- 6eX. Zhao, L. Du, B. You, Y. Sun, Catal. Sci. Technol. 2020, 10, 2711–2720;
- 6fB. You, Y. Sun, Acc. Chem. Res. 2018, 51, 1571–1580.
- 7
- 7aX. Wei, Y. Li, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2021, 60, 3148–3155;
- 7bC. Cao, D. D. Ma, J. Jia, Q. Xu, X. T. Wu, Q. L. Zhu, Adv. Mater. 2021, 33, 2008631;
- 7cL. Luo, W. Chen, S. M. Xu, J. Yang, M. Li, H. Zhou, M. Xu, M. Shao, X. Kong, Z. Li, H. Duan, J. Am. Chem. Soc. 2022, 144, 7720–7730;
- 7dZ. Li, Y. Yan, S. M. Xu, H. Zhou, M. Xu, L. Ma, M. Shao, X. Kong, B. Wang, L. Zheng, H. Duan, Nat. Commun. 2022, 13, 147;
- 7eK. Ji, M. Xu, S. M. Xu, Y. Wang, R. Ge, X. Hu, X. Sun, H. Duan, Angew. Chem. Int. Ed. 2022, 61, e202209849;
- 7fR. Ge, Y. Wang, Z. Li, M. Xu, S. M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem. Int. Ed. 2022, 61, e202200211.
- 8
- 8aL. Fan, X. Bai, C. Xia, X. Zhang, X. Zhao, Y. Xia, Z.-Y. Wu, Y. Lu, Y. Liu, H. Wang, Nat. Commun. 2022, 13, 2668;
- 8bC. Zhang, R. Lu, C. Liu, L. Yuan, J. Wang, Y. Zhao, C. Yu, Adv. Funct. Mater. 2021, 31, 2100099;
- 8cK. Zhang, J. Liu, L. Wang, B. Jin, X. Yang, S. Zhang, J. H. Park, J. Am. Chem. Soc. 2020, 142, 8641–8648;
- 8dS. R. Kelly, X. Shi, S. Back, L. Vallez, S. Y. Park, S. Siahrostami, X. Zheng, J. K. Nørskov, ACS Catal. 2019, 9, 4593–4599;
- 8eJ. H. Baek, T. M. Gill, H. Abroshan, S. Park, X. Shi, J. Nørskov, H. S. Jung, S. Siahrostami, X. Zheng, ACS Energy Lett. 2019, 4, 720–728;
- 8fS. Y. Park, H. Abroshan, X. Shi, H. S. Jung, S. Siahrostami, X. Zheng, ACS Energy Lett. 2019, 4, 352–357;
- 8gL. Li, Z. Hu, J. C. Yu, Angew. Chem. Int. Ed. 2020, 59, 20538–20544.
- 9
- 9aY. Wen, T. Zhang, J. Wang, Z. Pan, T. Wang, H. Yamashita, X. Qian, Y. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202205972;
- 9bA. Gopakumar, P. Ren, J. Chen, B. V. Manzolli Rodrigues, H. Y. V. Ching, A. Jaworski, S. V. Doorslaer, A. Rokicinska, P. Kuśtrowski, G. Barcaro, S. Monti, A. Slabon, S. Das, J. Am. Chem. Soc. 2022, 144, 2603–2613;
- 9cY. Y. Jiang, P. J. Ni, C. X. Chen, Y. Z. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater. 2018, 8, 1801909;
- 9dX. Zhao, Y. Wang, Y. Da, X. Wang, T. Wang, M. Xu, X. He, W. Zhou, Y. Li, J. N. Coleman, Y. Li, Natl. Sci. Rev. 2020, 7, 1360–1366;
- 9eX. Zhao, Q. Yin, X. Mao, C. Cheng, L. Zhang, L. Wang, T.-F. Liu, Y. Li, Y. Li, Nat. Commun. 2022, 13, 2721.
- 10
- 10aM. He, B. Xu, Q. Lu, Chin. J. Catal. 2022, 43, 1473–1477;
- 10bY. Yang, Y. Wang, S. Yin, Appl. Surf. Sci. 2017, 420, 399–406;
- 10cF. Li, L. Chen, G. P. Knowles, D. R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 505–509.
- 11
- 11aY. Wei, J. Liu, F. Cheng, J. Chen, J. Mater. Chem. A 2019, 7, 19651–19656;
- 11bL. Ran, D. Zhao, X. Gao, L. Yin, CrystEngComm 2015, 17, 4225–4237.
- 12Zulfiqar, Y. Yuan, Z. Iqbal, J. Lu, Int. J. Mod. Phys. B 2017, 31, 1750234.
- 13
- 13aX. Hu, H. Zhao, Y. Liang, R. Chen, Appl. Catal. B 2019, 258, 117966;
- 13bS. Wang, X. Ding, X. Zhang, H. Pang, X. Hai, G. Zhan, W. Zhou, H. Song, L. Zhang, H. Chen, J. Ye, Adv. Funct. Mater. 2017, 27, 1703923;
- 13cJ. Li, K. Zhao, Y. Yu, L. Zhang, Adv. Funct. Mater. 2015, 25, 2189–2201.
- 14
- 14aB. You, Y. Zhang, Y. Jiao, K. Davey, S. Qiao, Angew. Chem. Int. Ed. 2019, 58, 11796–11800;
- 14bB. You, X. Liu, G. Hu, S. Gul, J. Yano, D. E. Jiang, Y. Sun, J. Am. Chem. Soc. 2017, 139, 12283–12290.
- 15X. Hu, Z. Sun, G. Mei, X. Zhao, B. Y. Xia, B. You, Adv. Energy Mater. 2022, 12, 2201466.
- 16
- 16aX. Hu, H. Zhao, Y. Liang, F. Chen, J. Li, R. Chen, Chemosphere 2021, 264, 128434;
- 16bC. Ling, X. Liu, H. Li, X. Wang, H. Gu, K. Wei, M. Li, Y. Shi, H. Ben, G. Zhan, C. Liang, W. Shen, Y. Li, J. Zhao, L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200670.
- 17W. Y. Hu, Q. Y. Li, G. Y. Zhai, Y. X. Lin, D. Li, X. X. He, X. Lin, D. Xu, L. H. Sun, S. N. Zhang, J. S. Chen, X. H. Li, Small 2022, 18, 2200885.
- 18
- 18aP. Zhou, X. Lv, S. Tao, J. Wu, H. Wang, X. Wei, T. Wang, B. Zhou, Y. Lu, T. Frauenheim, X. Fu, S. Wang, Y. Zou, Adv. Mater. 2022, 34, 2204089;
- 18bK. Dong, J. Liang, Y. Wang, L. Zhang, Z. Xu, S. Sun, Y. Luo, T. Li, Q. Liu, N. Li, B. Tang, A. A. Alshehri, Q. Li, D. Ma, X. Sun, ACS Catal. 2022, 12, 6092–6099;
- 18cH. Li, P. Wen, D. S. Itanze, Z. D. Hood, S. Adhikari, C. Lu, X. Ma, C. Dun, L. Jiang, D. L. Carroll, Y. Qiu, S. M. Geyer, Nat. Commun. 2020, 11, 3928.
- 19P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu, W. Cai, S. Chen, Nat. Catal. 2022, 5, 900–911.
- 20
- 20aZ. Wang, Y. Zhou, C. Xia, W. Guo, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 19107–19112;
- 20bW. Wang, Z. Wang, R. Yang, J. Duan, Y. Liu, A. Nie, H. Li, B. Y. Xia, T. Zhai, Angew. Chem. Int. Ed. 2021, 60, 22940–22947;
- 20cP. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angew. Chem. Int. Ed. 2020, 59, 10807–10813.
- 21
- 21aS. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, Y. Wang, Nat. Commun. 2018, 9, 1181;
- 21bL. Wang, Y. Sun, F. Zhang, J. Hu, W. Hu, S. Xie, Y. Wang, J. Feng, Y. Li, G. Wang, B. Zhang, H. Wang, Q. Zhang, Y. Wang, Adv. Mater. 2023, 35, 2205782;
- 21cL. Wang, Y. Fu, Q. Li, Z. Wang, Environ. Sci. Technol. 2022, 56, 8796–8806;
- 21dL. Chen, J. Duan, P. Du, W. Sun, B. Lai, W. Liu, Water Res. 2022, 221, 118747.
- 22S.-N. Sun, L.-Z. Dong, J.-R. Li, J.-W. Shi, J. Liu, Y.-R. Wang, Q. Huang, Y.-Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202207282.
- 23S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682–689.
- 24A. Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen, B. Zhang, W. Zhu, J. Zeng, Nano Lett. 2019, 19, 6547–6553.