A Microporous Metal-Organic Framework with Unique Aromatic Pore Surfaces for High Performance C2H6/C2H4 Separation
Dr. Yingxiang Ye
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorYi Xie
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Yanshu Shi
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Lingshan Gong
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorDr. Joshua Phipps
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
Search for more papers by this authorProf. Abdullah M. Al-Enizi
Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorProf. Ayman Nafady
Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorCorresponding Author
Prof. Shengqian Ma
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
Search for more papers by this authorDr. Yingxiang Ye
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorYi Xie
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Yanshu Shi
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Lingshan Gong
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorDr. Joshua Phipps
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
Search for more papers by this authorProf. Abdullah M. Al-Enizi
Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorProf. Ayman Nafady
Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorCorresponding Author
Prof. Shengqian Ma
Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, TX, 76201 USA
Search for more papers by this authorGraphical Abstract
Abstract
Developing adsorptive separation processes based on C2H6-selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2H4 purification from C2H4/C2H6 mixtures, which however remains challenging. During our studies on two isostructural metal–organic frameworks (Ni-MOF 1 and Ni-MOF 2), we found that Ni-MOF 2 exhibited significantly higher performance for C2H6/C2H4 separation than Ni-MOF-1, as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C−H⋅⋅⋅π with C2H6 over C2H4 while the suitable pore spaces enforce its high C2H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg−1 of polymer-grade C2H4 product from equimolar C2H6/C2H4 mixtures at ambient conditions.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202302564-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. B. Eldridge, Ind. Eng. Chem. Res. 1993, 32, 2208–2212.
- 2
- 2aS. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22;
- 2bM. H. Mohamed, Y. Yang, L. Li, S. Zhang, J. P. Ruffley, A. G. Jarvi, S. Saxena, G. Veser, J. K. Johnson, N. L. Rosi, J. Am. Chem. Soc. 2019, 141, 13003–13007.
- 3
- 3aY. Wang, S. B. Peh, D. Zhao, Small 2019, 15, 1900058;
- 3bH. Wang, D. Luo, E. Velasco, L. Yu, J. Li, J. Mater. Chem. A 2021, 9, 20874–20896.
- 4
- 4aR. B. Lin, L. Li, H. L. Zhou, H. Wu, C. He, S. Li, R. Krishna, J. Li, W. Zhou, B. Chen, Nat. Mater. 2018, 17, 1128–1133;
- 4bZ. Bao, J. Wang, Z. Zhang, H. Xing, Q. Yang, Y. Yang, H. Wu, R. Krishna, W. Zhou, B. Chen, Q. Ren, Angew. Chem. Int. Ed. 2018, 57, 16020–16025;
- 4cC. Gu, N. Hosono, J. J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387–391;
- 4dY. Yang, L. Li, R. B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, Nat. Chem. 2021, 13, 933–939.
- 5D. F. Lv, P. J. Zhou, J. H. Xu, S. Tu, F. Xu, J. Yan, H. X. Xi, W. B. Yuan, Q. Fu, X. Chen, Q. B. Xia, Chem. Eng. J. 2022, 431, 133208.
- 6
- 6aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 6bX. Zhao, Y. Wang, D. S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189;
- 6cR. B. Lin, Z. Zhang, B. Chen, Acc. Chem. Res. 2021, 54, 3362–3376;
- 6dX. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141–144;
- 6eA. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140;
- 6fY. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136;
- 6gJ. B. Lin, T. T. T. Nguyen, R. Vaidhyanathan, J. Burner, J. M. Taylor, H. Durekova, F. Akhtar, R. K. Mah, O. Ghaffari-Nik, S. Marx, N. Fylstra, S. S. Iremonger, K. W. Dawson, P. Sarkar, P. Hovington, A. Rajendran, T. K. Woo, G. K. H. Shimizu, Science 2021, 374, 1464–1469;
- 6hY. Ye, S. Xian, H. Cui, K. Tan, L. Gong, B. Liang, T. Pham, H. Pandey, R. Krishna, P. C. Lan, K. A. Forrest, B. Space, T. Thonhauser, J. Li, S. Ma, J. Am. Chem. Soc. 2022, 144, 1681–1689.
- 7
- 7aE. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610;
- 7bB. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P. K. Thallapally, J. Liu, M. Chrzanowski, S. Ma, J. Am. Chem. Soc. 2014, 136, 8654–8660;
- 7cL. Zhang, L. Li, E. Hu, L. Yang, K. Shao, L. Yao, K. Jiang, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Adv. Sci. 2020, 7, 1901918.
- 8J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 9
- 9aC. Gücüyener, J. van den Bergh, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2010, 132, 17704–17706;
- 9bU. Böhme, B. Barth, C. Paula, A. Kuhnt, W. Schwieger, A. Mundstock, J. Caro, M. Hartmann, Langmuir 2013, 29, 8592–8600;
- 9cW. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li, Z. Li, Chem. Eng. Sci. 2016, 148, 275–281;
- 9dR. B. Lin, H. Wu, L. Li, X. L. Tang, Z. Li, J. Gao, H. Cui, W. Zhou, B. Chen, J. Am. Chem. Soc. 2018, 140, 12940–12946;
- 9eM. Kang, S. Yoon, S. Ga, D. W. Kang, S. Han, J. H. Choe, H. Kim, D. W. Kim, Y. G. Chung, C. S. Hong, Adv. Sci. 2021, 8, 2004940.
- 10H. Yang, Y. Wang, R. Krishna, X. Jia, Y. Wang, A. N. Hong, C. Dang, H. E. Castillo, X. Bu, P. Feng, J. Am. Chem. Soc. 2020, 142, 2222–2227.
- 11L. Li, R. B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446.
- 12
- 12aS. Galli, N. Masciocchi, V. Colombo, A. Maspero, G. Palmisano, F. J. Lopez-Garzon, M. Domingo-Garcia, I. Fernandez-Morales, E. Barea, J. A. R. Navarro, Chem. Mater. 2010, 22, 1664–1672;
- 12bL. Wang, Y. Ye, Z. Li, Q. Lin, J. Ouyang, L. Liu, Z. Zhang, S. Xiang, Cryst. Growth Des. 2017, 17, 2081–2089.
- 13G. Huang, L. Yang, Q. Yin, Z. B. Fang, X. J. Hu, A. A. Zhang, J. Jiang, T. F. Liu, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 4385–4390.
- 14X. Wang, Z. Niu, A. M. Al-Enizi, A. Nafady, Y. F. Wu, B. Aguila, G. Verma, L. Wojtas, Y. S. Chen, Z. Li, S. Q. Ma, J. Mater. Chem. A 2019, 7, 13585–13590.
- 15Y. W. Chen, Z. W. Qiao, H. X. Wu, D. F. Lv, R. F. Shi, Q. B. Xia, J. Zhou, Z. Li, Chem. Eng. Sci. 2018, 175, 110–117.
- 16X. Zhang, J. X. Wang, L. Li, J. Pei, R. Krishna, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, Angew. Chem. Int. Ed. 2021, 60, 10304–10310.
- 17F. Jin, E. Lin, T. Wang, S. Geng, T. Wang, W. Liu, F. Xiong, Z. Wang, Y. Chen, P. Cheng, Z. Zhang, J. Am. Chem. Soc. 2022, 144, 5643–5652.
- 18P. Q. Liao, W. X. Zhang, J. P. Zhang, X. M. Chen, Nat. Commun. 2015, 6, 8697.
- 19Y. P. Li, Y. N. Zhao, S. N. Li, D. Q. Yuan, Y. C. Jiang, X. Bu, M. C. Hu, Q. G. Zhai, Adv. Sci. 2021, 8, 2003141.
- 20J. Y. Pei, J. X. Wang, K. Shao, Y. Yang, Y. J. Cui, H. Wu, W. Zhou, B. Li, G. D. Qian, J. Mater. Chem. A 2020, 8, 3613–3620.
- 21
- 21aO. T. Qazvini, R. Babarao, Z. L. Shi, Y. B. Zhang, S. G. Telfer, J. Am. Chem. Soc. 2019, 141, 5014–5020;
- 21bH. Zeng, X. J. Xie, M. Xie, Y. L. Huang, D. Luo, T. Wang, Y. Zhao, W. Lu, D. Li, J. Am. Chem. Soc. 2019, 141, 20390–20396;
- 21cS. Geng, E. Lin, X. Li, W. Liu, T. Wang, Z. Wang, D. Sensharma, S. Darwish, Y. H. Andaloussi, T. Pham, P. Cheng, M. J. Zaworotko, Y. Chen, Z. Zhang, J. Am. Chem. Soc. 2021, 143, 8654–8660.
- 22A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121–127.
- 23X. Zhang, L. Li, J. X. Wang, H. M. Wen, R. Krishna, H. Wu, W. Zhou, Z. N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640.
- 24R. Krishna, ACS Omega 2020, 5, 16987–17004.
- 25
- 25aH. G. Hao, Y. F. Zhao, D. M. Chen, J. M. Yu, K. Tan, S. Ma, Y. Chabal, Z. M. Zhang, J. M. Dou, Z. H. Xiao, G. Day, H. C. Zhou, T. B. Lu, Angew. Chem. Int. Ed. 2018, 57, 16067–16071;
- 25bA. A. Lysova, D. G. Samsonenko, K. A. Kovalenko, A. S. Nizovtsev, D. N. Dybtsev, V. P. Fedin, Angew. Chem. Int. Ed. 2020, 59, 20561–20567;
- 25cK. Su, W. Wang, S. Du, C. Ji, D. Yuan, Nat. Commun. 2021, 12, 3703;
- 25dC. X. Chen, Z. W. Wei, T. Pham, P. C. Lan, L. Zhang, K. A. Forrest, S. Chen, A. M. Al-Enizi, A. Nafady, C. Y. Su, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 9680–9685;
- 25eY. Wang, C. Hao, W. Fan, M. Fu, X. Wang, Z. Wang, L. Zhu, Y. Li, X. Lu, F. Dai, Z. Kang, R. Wang, W. Guo, S. Hu, D. Sun, Angew. Chem. Int. Ed. 2021, 60, 11350–11358;
- 25fL. Guo, M. Savage, J. H. Carter, X. Han, I. da Silva, P. Manuel, S. Rudic, C. C. Tang, S. Yang, M. Schroder, Chem. Mater. 2022, 34, 5698–5705;
- 25gZ. Di, C. Liu, J. Pang, S. Zou, Z. Ji, F. Hu, C. Chen, D. Yuan, M. Hong, M. Wu, Angew. Chem. Int. Ed. 2022, 61, e202210343;
- 25hP. Zhang, L. Yang, X. Liu, J. Wang, X. Suo, L. Chen, X. Cui, H. Xing, Nat. Commun. 2022, 13, 4928;
- 25iL. Yang, L. Yan, W. Niu, Y. Feng, Q. Fu, S. Zhang, Y. Zhang, L. Li, X. Gu, P. Dai, D. Liu, Q. Zheng, X. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202204046;
- 25jG. D. Wang, R. Krishna, Y. Z. Li, W. J. Shi, L. Hou, Y. Y. Wang, Z. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202213015;
- 25kS. S. Jiang, J. Q. Li, M. Feng, R. D. Chen, L. D. Guo, Q. Q. Xu, L. H. Chen, F. X. Shen, Z. G. Zhang, Y. W. Yang, Q. L. Ren, Q. W. Yang, Z. B. Bao, J. Mater. Chem. A 2022, 10, 24127–24136.