Manipulating Local Lattice Distortion for Spectrally Stable and Efficient Mixed-halide Blue Perovskite LEDs
Li Zhang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorYuanzhi Jiang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorYanxing Feng
School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorMinghuan Cui
Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorSaisai Li
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorXinliang Fu
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Hsien-Yi Hsu
School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, P. R. China
Search for more papers by this authorProf. Chaochao Qin
Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingjian Yuan
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorLi Zhang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorYuanzhi Jiang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorYanxing Feng
School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorMinghuan Cui
Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorSaisai Li
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorXinliang Fu
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorProf. Hsien-Yi Hsu
School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, P. R. China
Search for more papers by this authorProf. Chaochao Qin
Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, College of Physics and Materials Science, Henan Normal University, Xinxiang, 453000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingjian Yuan
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 P.R. China
Search for more papers by this authorGraphical Abstract
A new local lattice distortion (LLD) manipulation strategy was demonstrated to suppress the halide migration in mixed-halide perovskite. DFT simulation and experimental data confirm that the LLD manipulation effectively suppresses the halide migration in perovskites. Mixed-halide blue PeLED with champion EQE of 14.2 % at 475 nm and impressive T50 of 72 min has been achieved, representing the state-of-the-art pure-blue PeLEDs.
Abstract
Mixed-halide perovskites are considered the most straightforward candidate to realize blue perovskite light-emitting diodes (PeLEDs). However, they suffer severe halide migration, leading to spectral instability, which is particularly exaggerated in high chloride alloying perovskites. Here, we demonstrate energy barrier of halide migration can be tuned by manipulating the degree of local lattice distortion (LLD). Enlarging the LLD degree to a suitable level can increase the halide migration energy barrier. We herein report an “A-site” cation engineering to tune the LLD degree to an optimal level. DFT simulation and experimental data confirm that LLD manipulation suppresses the halide migration in perovskites. Conclusively, mixed-halide blue PeLEDs with a champion EQE of 14.2 % at 475 nm have been achieved. Moreover, the devices exhibit excellent operational spectral stability (T50 of 72 min), representing one of the most efficient and stable pure-blue PeLEDs reported yet.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202302184-sup-0001-misc_information.pdf19.8 MB | Supporting Information |
anie202302184-sup-0001-Video S1-Spectral unstability__AK__.mp42.7 MB | Supporting Information |
anie202302184-sup-0001-Video S2-Spectral stability__AK__.mp43.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Nature 2018, 562, 249–253.
- 2K. Lin, J. Xing, L. N. Quan, F. De Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wie, Nature 2018, 562, 245–248.
- 3Y. Hassan, J. H. Park, M. L. Crawford, A. Sadhanala, J. Lee, J. C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S. H. Park, M. H. Song, F. D. Angelis, C. Y. Wong, R. H. Friend, B. R. Lee, H. J. Snaith, Nature 2021, 591, 72–77.
- 4
- 4aY. Jiang, C. Sun, J. Xu, S. Li, M. Cui, X. Fu, Y. Liu, Y. Liu, H. Wan, K. Wei, T. Zhou, W. Zhang, Y. Yang, J. Yang, C. Qin, S. Gao, J. Pan, Y. Liu, S. Hoogland, E. H. Sargent, J. Chen, M. Yuan, Nature 2022, 612, 679–684;
- 4bC. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei, Y. Huang, L. Zhang, T. He, S. Li, H.-Y. Hsu, C. Qin, R. Long, M. Yuan, Nat. Commun. 2021, 12, 2207.
- 5Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang, J. Wei, L. Zhang, M. Lv, C. Qin, Y. Liu, M. Yuan, Nat. Commun. 2021, 12, 336.
- 6
- 6aY. Jiang, C. Qin, M. Cui, T. He, K. Liu, Y. Huang, M. Luo, L. Zhang, H. Xu, S. Li, J. Wie, Z. Liu, H. Wang, G.-H. Kim, M. Yuan, J. Chen, Nat. Commun. 2019, 10, 1868;
- 6bY. Miao, X. Wang, H. Zhang, T. Zhang, N. Wei, X. Liu, Y. Chen, J. Chen, Y. Zhao, eScience 2021, 1, 91–97.
- 7L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 8L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang, M. Yuan, Light: Sci. Appl. 2021, 10, 61.
- 9M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.-H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.-M. Cheng, L. Wang, Nat. Energy 2020, 5, 79–88.
- 10
- 10aT. He, S. Li, Y. Jiang, C. Qin, M. Cui, L. Qiao, H. Xu, J. Yang, R. Long, H. Wang, M. Yuan, Nat. Commun. 2020, 11, 1672;
- 10bK. Wang, Y.-G. Yang, Y.-H. Lou, M. Li, F. Igbari, J.-J. Cao, J. Chen, W.-F. Yang, C. Dong, R.-Z. Tai, Z.-K. Wang, eScience 2021, 1, 53–59.
- 11J.-N. Yang, Y. Song, J.-S. Yao, K.-H. Wang, J.-J. Wang, B.-S. Zhu, M.-M. Yao, S. U. Rahman, Y.-F. Lan, F.-J. Fan, H.-B. Yao, J. Am. Chem. Soc. 2020, 142, 2956–2967.
- 12Q. Wang, X. Wang, Z. Yang, N. Zhou, Y. Deng, J. Zhao, X. Xiao, P. Rudd, A. Moran, Y. Yan, J. Huang, Nat. Commun. 2019, 10, 5633.
- 13A. J. Knight, J. Borchert, R. D. Oliver, J. B. Patel, P. G. Radaelli, H. J. Snaith, M. B. Johnston, L. M. Herz, ACS Energy Lett. 2021, 6, 799–808.
- 14W. Li, M. U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A. R. Pascoe, J. Lu, L. Jiang, Y. Chen, F. Huang, Y. Peng, Q. Bao, J. Etherighe, U. Bach, Adv. Energy Mater. 2017, 7, 1700946.
- 15H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, Nat. Commun. 2019, 10, 1088.
- 16D. Ma, P. Todorović, S. Meshkat, M. I. Saidaminov, Y.-K. Wang, B. Chen, P. Li, B. Scheffel, R. Quintero-Bermudez, J. Z. Fan, Y. Dong, B. Sun, C. Xu, C. Zhou, Y. Hou, X. Li, Y. Kang, O. Voznyy, Zh.-H. Lu, D. Ban, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 5126–5134.
- 17J.-W. Lee, S. Tan, S. I. Seok, Y. Yang, N.-G. Park, Science 2022, 375, eabj1186.
- 18X. Wang, Y. Ling, X. Lian, Y. Xin, K. B. Dhungana, F. Perez-Orive, J. Knox, Z. Chen, Y. Zhou, D. Beery, K. Hanson, J. Shi, S. Lin, H. Gao, Nat. Commun. 2019, 10, 695.
- 19L. Cheng, C. Yi, Y. Tong, L. Zhu, G. Kusch, X. Wang, X. Wang, T. Jiang, H. Zhang, J. Zhang, C. Xue, H. Chen, W. Xu, D. Liu, R. A. Oliver, R. H. Friend, L. Zhang, N. Wang, W. Huang, J. Wang, Research 2020, 2020, 9017871.
- 20M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin, Z. Zhang, C. Bao, R. Zhang, S. Bai, G. Zheng, P. Teng, L. Duan, Y. Lu, K. Zheng, T. Pullerits, C. Deibel, W. Xu, R. Friend, F. Gao, Nat. Commun. 2021, 12, 361.
- 21S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. S. Manser, P. V. Kamat, W. F. Schneider, M. Kuno, Nat. Commun. 2017, 8, 200.
- 22R. E. Beal, N. Z. Hagström, J. Barrier, A. Gold-Parker, R. Prasanna, K. A. Bush, D. Passarello, L. T. Schelhas, K. Brüning, C. J. Tassone, H.-G. Steinruck, M. D. McGehee, M. F. Toney, A. F. Nogueira, Matter 2020, 2, 207–219.
- 23
- 23aZ. Chu, Y. Zhao, F. Ma, C.-X. Zhang, H. Deng, F. Gao, Q. Ye, J. Meng, Z. Yin, X. Zhang, J. You, Nat. Commun. 2020, 11, 4165;
- 23bS. Wang, P. Wang, B. Chen, R. Li, N. Ren, Y. Li, B. Shi, Q. Huang, Y. Zhao, M. Grätzel, X. Zhang, eScience 2022, 2, 339–346.
- 24N. Li, L. Song, Y. Jia, Y. Dong, F. Xie, L. Wang, S. Tao, N. Zhao, Adv. Mater. 2020, 32, 1907786.
- 25P. Nandi, Z. Li, Y. Kim, T. K. Ahn, N.-G. Park, H. Shin, ACS Energy Lett. 2021, 6, 837–847.
- 26S. Tan, I. Yavuz, N. De Marco, T. Huang, S. J. Lee, C. S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, H. C. Wang, T.-H. Han, B. Dunn, Y. Huang, J.-W. Lee, Y. Yang, Adv. Mater. 2020, 32, 1906995.
- 27D. W. Ferdani, S. R. Pering, D. Ghosh, P. Kubiak, A. B. Walker, S. E. Lewis, A. L. Johnson, P. J. Baker, M. S. Islam, P. J. Cameron, Energy Environ. Sci. 2019, 12, 2264–2272.
- 28F. Zhang, J. Song, B. Cai, X. Chen, C. Wei, T. Fang, H. Zeng, Sci. Bull. 2021, 66, 2189–2198.
- 29Y. Guo, S. Apergi, N. Li, M. Chen, C. Yin, Z. Yuan, F. Gao, F. Xie, G. Brocks, S. Tao, N. Zhao, Nat. Commun. 2021, 12, 644.
- 30E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman, I. G. Scheblykin, E. L. Unger, E. Joselevich, Nat. Commun. 2020, 11, 489.
- 31H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. I. Seok, Science 2019, 366, 749–753.
- 32L. Mao, R. M. Kennard, B. Traore, W. Ke, C. Katan, J. Even, M. L. Chabinyc, C. C. Stoumpos, M. G. Kanatzidis, Chem 2019, 5, 2593–2604.
- 33J. Wen, Y. Zhao, Z. Liu, H. Gao, R. Lin, S. Wan, C. Ji, K. Xiao, Y. Gao, Y. Tian, J. Xie, C. J. Brabec, H. Tan, Adv. Mater. 2022, 34, 2110356.
- 34H. Chen, Q. Wei, M. I. Saidaminov, F. Wang, A. Johnston, Y. Hou, Z. Peng, K. Xu, W. Zhou, Z. Liu, L. Qiao, X. Wang, S. Xu, J. Li, R. Long, Y. Ke, E. H. Sargent, Z. Ning, Adv. Mater. 2019, 31, 1903559.
- 35Z. Zhang, M. A. Kamarudin, A. K. Baranwal, G. Kapil, S. R. Sahamir, Y. Sanehira, M. Chen, L. Wang, Q. Shen, S. Hayase, Angew. Chem. Int. Ed. 2022, 61, e202210101; Angew. Chem. 2022, 134, e202210101.
- 36L. A. Muscarella, B. Ehrler, Joule 2022, 6, 2016–2031.
- 37H. Wang, Z. Chen, F. Tian, G. Zheng, H. Wang, T. Zhang, J. Qin, X. Gao, P. A. van Aken, L. Zhang, X.-K. Liu, F. Gao, Adv. Energy Mater. 2022, 12, 2202185.
- 38B. Liu, J. Li, G. Wang, F. Ye, H. Yan, M. Zhang, S.-C. Dong, L. Lu, P. Huang, T. He, P. Xu, H.-S. Kwok, G. Li, Sci. Adv. 2022, 8, eabq0138.
- 39X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang, J. Fang, Nat. Commun. 2018, 9, 3806.
- 40Y. Tong, X. Bi, S. Xu, H. Min, L. Cheng, Z. Kuang, L. Yuan, F. Zhou, Y. Chu, L. Xu, L. Zhu, N. Zhao, N. Wang, W. Huang, J. Wang, Adv. Mater. 2022, 34, 2207111.
- 41J. Hieulle, X. Wang, C. Stecker, D.-Y. Son, L. Qiu, R. Ohmann, L. K. Ono, A. Mugarza, Y. Yan, Y. Qi, J. Am. Chem. Soc. 2019, 141, 3515–3523.
- 42M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent, Nat. Nanotechnol. 2016, 11, 872–877.
- 43N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699–704.
- 44BT Series, 2100: Image parameter values for high dynamic range television for production and international program exchange; www.itu.int/rec/R-REC-BT.2100-2-201807-I/en.
- 45H. Kim, J. S. Kim, J.-M. Heo, M. Pei, I.-H. Park, Z. Liu, H. J. Yun, M.-H. Park, S.-H. Jeong, Y.-H. Kim, J.-W. Park, E. Oveisi, S. Nagane, A. Sadhanala, L. Zhang, J. J. Kweon, S. K. Lee, H. Yang, H. M. Jang, R. H. Friend, K. P. Loh, M. K. Nazeeruddin, N.-G. Park, T.-W. Lee, Nat. Commun. 2020, 11, 337.