Tailoring *H Intermediate Coverage on the CuAl2O4/CuO Catalyst for Enhanced Electrocatalytic CO2 Reduction to Ethanol
Tingting Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorBowen Yuan
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorWenlong Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jing He
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xu Xiang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorTingting Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorBowen Yuan
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorWenlong Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jing He
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xu Xiang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorGraphical Abstract
We propose a *H-intermediate-mediating strategy for ethanol electroproduction from CO2RR. The findings reveal that the in situ generated CuAl2O4 in Cu-based catalyst could accelerate water dissociation and tailor *H intermediate coverage, which favors hydrogenation of the *HCCOH to ethanol. This study directs a feasible avenue for mediating *H intermediate coverage and tailoring *H-involved reduction reaction pathways on an efficient and durable Cu-based oxide catalyst.
Abstract
The direct electrochemical conversion of CO2 to multi-carbon products offers a promising pathway for producing value-added chemicals using renewable electricity. However, producing ethanol remains a challenge because of the competitive ethylene formation and hydrogen evolution reactions. Herein, we propose an active hydrogen (*H)-intermediate-mediating strategy for ethanol electroproduction on a layered precursor-derived CuAl2O4/CuO catalyst. The catalyst delivered a Faradaic efficiency of 70 % for multi-carbon products and 41 % for ethanol at current density of 200 mA cm−2 and exhibited a continuous 150 h durability in a flow cell. The intensive spectroscopic studies combined with theoretical calculations revealed that the in situ generated CuAl2O4 could tailor *H intermediate coverage and the elevated *H coverage favors the hydrogenation of the *HCCOH intermediate, accounting for the increased yield of ethanol. This work directs a pathway for enhancing ethanol electroproduction from CO2 reduction by tailoring *H intermediate coverage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202302096-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993–5061.
- 2D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210.
- 3S. Chu, A. Majumdar, Nature 2012, 488, 294–303.
- 4H. Wang, Y.-K. Tzeng, Y. Ji, Y. Li, J. Li, X. Zheng, A. Yang, Y. Liu, Y. Gong, L. Cai, Y. Li, X. Zhang, W. Chen, B. Liu, H. Lu, N. A. Melosh, Z.-X. Shen, K. Chan, T. Tan, S. Chu, Y. Cui, Nat. Nanotechnol. 2020, 15, 131–137.
- 5J. Y. Kim, D. Hong, J. C. Lee, H. G. Kim, S. Lee, S. Shin, B. Kim, H. Lee, M. Kim, J. Oh, G. D. Lee, D. H. Nam, Y. C. Joo, Nat. Commun. 2021, 12, 3765.
- 6L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Sci. Adv. 2020, 6, 3111.
- 7S. Kuang, Y. Su, M. Li, H. Liu, H. Chuai, X. Chen, E. J. Hensen, T. J. Meyer, S. Zhang, X. Ma, Proc. Natl. Acad. Sci. USA 2023, 120, e2214175120.
- 8H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean, R. E. Winans, D.-J. Liu, T. Xu, Nat. Energy 2020, 5, 623–632.
- 9A. J. Garza, A. T. Bell, M. Head-Gordon, ACS Catal. 2018, 8, 1490–1499.
- 10D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 18178–18184.
- 11Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659.
- 12Y. Zang, T. Liu, P. Wei, H. Li, Q. Wang, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2022, 61, e202209629.
- 13S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 14S. C. Lin, C. C. Chang, S. Y. Chiu, H. T. Pai, T. Y. Liao, C. S. Hsu, W. H. Chiang, M. K. Tsai, H. M. Chen, Nat. Commun. 2020, 11, 3525.
- 15S. H. Lee, J. C. Lin, M. Farmand, A. T. Landers, J. T. Feaster, J. E. Aviles Acosta, J. W. Beeman, Y. Ye, J. Yano, A. Mehta, R. C. Davis, T. F. Jaramillo, C. Hahn, W. S. Drisdell, J. Am. Chem. Soc. 2021, 143, 588–592.
- 16Y. Wang, J. Liu, G. Zheng, Adv. Mater. 2021, 33, 2005798.
- 17J. H. Lee, S. Kattel, Z. Xie, B. M. Tackett, J. Wang, C.-J. Liu, J. G. Chen, Adv. Funct. Mater. 2018, 28, 1804762.
- 18H. Huo, J. Wang, Q. Fan, Y. Hu, J. Yang, Adv. Energy Mater. 2021, 11, 2102447.
- 19G. Zhang, T. Wang, M. Zhang, L. Li, D. Cheng, S. Zhen, Y. Wang, J. Qin, Z. Zhao, J. Gong, Nat. Commun. 2022, 13, 7768.
- 20L. Ou, Z. He, Surf. Sci. 2021, 705, 121782.
- 21X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong, G. Wang, L. Xiao, J. Lu, L. Zhuang, ACS Catal. 2020, 10, 4103–4111.
- 22S. Ahn, K. Klyukin, R. J. Wakeham, J. A. Rudd, A. R. Lewis, S. Alexander, F. Carla, V. Alexandrov, E. Andreoli, ACS Catal. 2018, 8, 4132–4142.
- 23
- 23aW. Lees, B. A. W. Mowbray, F. G. L. Parlane, C. P. Berlinguette, Nat. Rev. Mater. 2022, 7, 55–64;
- 23bY. Kim, E. W. Lees, C. P. Berlinguette, ACS Energy Lett. 2022, 7, 2382–2387.
- 24J. Wang, H. Yang, Q. Liu, Q. Liu, X. Li, X. Lv, T. Cheng, H. B. Wu, ACS Energy Lett. 2021, 6, 437–444.
- 25J. Zhang, T. H. M. Pham, Y. Ko, M. Li, S. Yang, C. D. Koolen, L. Zhong, W. Luo, A. Züttel, Cell Rep. Phys. Sci. 2022, 3, 100949.
- 26W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478–487.
- 27M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton, E. H. Sargent, Nat. Commun. 2019, 10, 5814.
- 28J. Li, A. Xu, F. Li, Z. Wang, C. Zou, C. M. Gabardo, Y. Wang, A. Ozden, Y. Xu, D. H. Nam, Y. W. Lum, J. Wicks, B. Chen, Z. Wang, J. Chen, Y. Wen, T. Zhuang, M. Luo, X. Du, T. K. Sham, B. Zhang, E. H. Sargent, D. Sinton, Nat. Commun. 2020, 11, 3685.
- 29J. Ma, Y. Chen, G. He, H. He, Appl. Catal. B 2021, 285, 119806.
- 30Q. Zhou, T.-T. Li, J. Qian, W. Xu, Y. Hu, Y.-Q. Zheng, ACS Appl. Energ. Mater. 2018, 1, 1364–1373.
- 31Z. Wang, Y. Tang, T. Wang, K. Liang, J. Hazard. Mater. 2019, 368, 421–428.
- 32K. Chen, J. L. Ling, C. D. Wu, Angew. Chem. Int. Ed. 2020, 59, 1925–1931.
- 33X. Xie, B. Li, R. Xie, X. Tong, Y. Li, S. Zhang, J. Li, Q. Song, J. Mol. Liq. 2022, 368, 120759.
- 34C. Peng, Z. Xu, G. Luo, S. Yan, J. Zhang, S. Li, Y. Chen, L. Y. Chang, Z. Wang, T. K. Sham, G. Zheng, Adv. Energy Mater. 2022, 12, 2200195.
- 35J. Hao, Z. Zhuang, J. Hao, C. Wang, S. Lu, F. Duan, F. Xu, M. Du, H. Zhu, Adv. Energy Mater. 2022, 12, 2200579.
- 36X. Wang, Z. Wang, F. P. García de Arquer, C.-T. Dinh, A. Ozden, Y. C. Li, D.-H. Nam, J. Li, Y.-S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T.-T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S.-F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O'Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Energy 2020, 5, 478–486.
- 37C. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. de Arquer, A. Kiani, J. P. Edwards, P. D. Luna, O. S. Bushuyev, C. Zou, R. Q. Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783–787.
- 38Q. Fu, X. Wang, J. Han, J. Zhong, T. Zhang, T. Yao, C. Xu, T. Gao, S. Xi, C. Liang, L. Xu, P. Xu, B. Song, Angew. Chem. Int. Ed. 2021, 60, 259–267.
- 39W. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 2019, 10, 5074.
- 40S. Chen, X. Li, C. W. Kao, T. Luo, K. Chen, J. Fu, C. Ma, H. Li, M. Li, T. S. Chan, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202206233.
- 41J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 2019, 12, 2298–2304.
- 42J. Li, J. Hu, M. Zhang, W. Gou, S. Zhang, Z. Chen, Y. Qu, Y. Ma, Nat. Commun. 2021, 12, 3502.
- 43A. Damian, S. Omanovic, J. Power Sources 2006, 158, 464–476.
- 44Y.-J. Zhang, V. Sethuraman, R. Michalsky, A. A. Peterson, ACS Catal. 2014, 4, 3742–3748.
- 45J. Hu, D. Li, J. G. Lu, R. Wu, J. Phys. Chem. C 2010, 114, 17120–17126.
- 46J. Zhang, G. Chen, Q. Liu, C. Fan, D. Sun, Y. Tang, H. Sun, X. Feng, Angew. Chem. Int. Ed. 2022, 61, e202209486.
- 47R. Yang, J. Duan, P. Dong, Q. Wen, M. Wu, Y. Liu, Y. Liu, H. Li, T. Zhai, Angew. Chem. Int. Ed. 2022, 61, e202116706.
- 48P. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao, S. H. Yu, J. Am. Chem. Soc. 2020, 142, 6400–6408.
- 49B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng, S. Chen, H. Xie, X. Dong, H. Wang, F. Dong, Angew. Chem. Int. Ed. 2022, 61, e202114080.
- 50
- 50aC. Zhan, F. Dattila, C. Rettenmaier, A. Bergmann, S. Kuhl, R. Garcia-Muelas, N. Lopez, B. R. Cuenya, ACS Catal. 2021, 11, 7694–7701;
- 50bA. Vasileff, Y. Zhu, X. Zhi, Y. Zhao, L. Ge, H. Chen, Y. Zheng, S. Qiao, Angew. Chem. Int. Ed. 2020, 59, 19649–19653.
- 51R. M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, Nat. Energy 2020, 5, 317–325.
- 52M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao, J. Duan, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2022, 144, 14936–14944.
- 53H. An, L. Wu, L. D. B. Mandemaker, S. Yang, J. de Ruiter, J. H. J. Wijten, J. C. L. Janssens, T. Hartman, W. van der Stam, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2021, 60, 16576–16584.
- 54J. Yin, Z. Gao, F. Wei, C. Liu, J. Gong, J. Li, W. Li, L. Xiao, G. Wang, J. Lu, L. Zhuang, ACS Catal. 2022, 12, 1004–1011.
- 55E. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo, M. T. Koper, Angew. Chem. Int. Ed. 2017, 56, 3621–3624.
- 56J. V. Ochoa, C. Trevisanut, J.-M. M. Millet, G. Busca, F. Cavani, J. Phys. Chem. C 2013, 117, 23908–23918.
- 57X. Kong, J. Zhao, J. Ke, C. Wang, S. Li, R. Si, B. Liu, J. Zeng, Z. Geng, Nano Lett. 2022, 22, 3801–3808.
- 58F. Li, Y. C. Li, Z. Wang, J. Li, D.-H. Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S.-F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C.-T. Dinh, Y. Wang, T.-T. Zhuang, D. Sinton, E. H. Sargent, Nat. Catal. 2020, 3, 75–82.