Light-driven Orderly Assembly of Ir-atomic Chains to Integrate a Dynamic Reaction Pathway for Acidic Oxygen Evolution
Zuozheng Xu
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLiqi Zhou
College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Gang Zhou
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorShuyi Wu
Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009 P. R. China
Search for more papers by this authorCorresponding Author
Peifang Wang
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorHao Li
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorPeilin Huang
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Lizhe Liu
Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZuozheng Xu
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLiqi Zhou
College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Gang Zhou
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorShuyi Wu
Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009 P. R. China
Search for more papers by this authorCorresponding Author
Peifang Wang
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorHao Li
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorPeilin Huang
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Lizhe Liu
Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorGraphical Abstract
Herein, we propose an intriguing light-driven orderly assembly strategy for implanting Ir-chains and clusters onto catalyst surfaces with different order degrees. Interestingly, the dynamic orbital interaction between orderly Ir-atomic chains and clusters can be regulated by balancing the dissolution and redisposition rate. As a result, the activation energy in acidic OER can be effectively reduced by integrating a dynamic reaction pathway.
Abstract
This work suggests an intriguing light-driven atomic assembly proposal to orderly configure the distribution of reactive sites to optimize the spin-entropy-related orbital interaction and charge transfer from electrocatalysts to intermediates. Herein, the introduced fluorine (F) atoms acting as photo-corrosion centres in MnO1.9F0.1 effectively soften the bonding interaction of Mn−O bonds in the IrCl3 solution. Therefore, partial Mn atoms can be successively replaced to form orderly atomic-hybridized catalysts with a spin-related low entropy due to the coexistence of Ir-atomic chains and clusters. The time-related elemental analysis demonstrates that the dynamic dissolution/redeposition of Ir clusters in acidic oxygen evolution leads to a reintegration of the reaction pathway to seek the switchable rate-limiting step with a lower activation energy.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202301128-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Pu, T. Liu, G. Zhang, Z. Chen, D.-S. Li, N. Chen, W. Chen, Z. Chen, S. Sun, Adv. Energy Mater. 2022, 12, 2200293;
- 1bA. Ali, F. Long, P. Shen, Electrochem. Energy Rev. 2022, 5, 1;
- 1cL. Zhou, S. Lu, S. Guo, SusMat 2021, 1, 194–210;
- 1dM. Chatenet, B. Pollet, D. Dekel, F. Dionigi, J. Deseure, P. Millet, R. Braatz, M. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schäfer, Chem. Soc. Rev. 2022, 51, 4583–4762.
- 2
- 2aQ. Wang, Y. Cheng, H. Tao, Y. Liu, X. Ma, D.-S. Li, H. Yang, B. Liu, Angew. Chem. Int. Ed. 2023, 62, e202216645;
- 2bZ. Pu, T. Liu, G. Zhang, Ha. Ranganathan, Z. Chen, S. Sun, ChemSusChem 2021, 14, 4636–4657;
- 2cJ. Chen, H. Chen, T. Yu, R. Li, Y. Wang, Z. Shao, S. Song, Electrochem. Energy Rev. 2021, 4, 566–600.
- 3
- 3aM. Carmo, D. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901–4934;
- 3bL. King, M. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T. Hellstern, K. Ayers, T. Jaramillo, Nat. Nanotechnol. 2019, 14, 1071–1074;
- 3cS. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng, F. Zhang, X. Liu, Z. Su, J. Hu, Y. Qian, L. Zhou, Y. He, B. Song, L. Lei, X. Zhang, S. Jin, Nat. Nanotechnol. 2021, 16, 1371–1377.
- 4
- 4aY. Chen, H. Li, J. Wang, Y. Du, S. Xi, Y. Sun, M. Sherburne, J. Ager III, A. Fisher, Z. J. Xu, Nat. Commun. 2019, 10, 572;
- 4bX. Miao, L. Zhang, L. Wu, Z. Hu, L. Shi, S. Zhou, Nat. Commun. 2019, 10, 3809;
- 4cJ. Huang, H. Sheng, R. Ross, J. Han, X. Wang, B. Song, S. Jin, Nat. Commun. 2021, 12, 3036;
- 4dG. Zhou, P. Wang, B. Hu, X. Shen, C. Liu, W. Tao, P. Haung, L. Liu, Nat. Commun. 2022, 13, 4106.
- 5
- 5aM. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A. Pereira, Á. García, J. Torrero, M. Fernández-Díaz, P. Bencok, M. Peña, J. Fierro, S. Rojas, Nat. Commun. 2019, 10, 2041;
- 5bB. Kim, D. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal, F. Bozza, I. Castelli, D. Lebedev, R. Schäuble, C. Coperet, T. Graule, N. Marzari, T. J. Schmidt, ACS Catal. 2017, 7, 3245–3256.
- 6
- 6aX. Liang, L. Shi, R. Cao, G. Wan, W. Yan, H. Chen, Y. Liu, X. Zou, Adv. Mater. 2020, 32, 2001430;
- 6bY. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nat. Commun. 2019, 10, 162;
- 6cZ. Shi, J. Li, J. Jiang, Y. Wang, X. Wang, Y. Li, L. Yang, Y. Chu, J. Bai, J. Yang, J. Ni, Y. Wang, L. Zhang, Z. Jiang, C. Liu, J. Ge, W. Xing, Angew. Chem. Int. Ed. 2022, 61, e202212341.
- 7Johnson Matthey Price Charts (Johnson Matthey, accessed 15 December 2020); www.platinum.matthey.com/prices/price-charts.
- 8
- 8aG. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong, Y. Li, Nat. Commun. 2019, 10, 4855;
- 8bH. Su, W. Zhou, W. Zhou, Y. Li, L. Zheng, H. Zhang, M. Liu, X. Zhang, X. Sun, Y. Xu, F. Hu, J. Zhang, T. Hu, Q. Liu, S. Wei, Nat. Commun. 2021, 12, 6118;
- 8cQ. Dang, H. Lin, Z. Fan, L. Ma, Q. Shao, Y. Ji, F. Zheng, S. Geng, S. Yang, N. Kong, W. Zhu, Y. Li, F. Liao, X. Huang, M. Shao, Nat. Commun. 2021, 12, 6007;
- 8dN. Li, L. Cai, C. Wang, Y. Lin, J. Huang, H. Sheng, H. Pan, W. Zhang, Q. Ji, H. Duan, W. Hu, W. Zhang, F. Hu, H. Tan, Z. Sun, B. Song, S. Jin, W. Yan, J. Am. Chem. Soc. 2021, 143, 18001–18009;
- 8eZ. Fan, Y. Ji, Q. Shao, S. Geng, W. Zhu, Y. Liu, F. Liao, Z. Hu, Y. Chang, C. Pao, Y. Li, Z. Kang, M. Shao, Joule 2021, 5, 3221–3234.
- 9
- 9aY. Sun, S. Sun, H. Yang, S. Xi, J. Gracia, Z. J. Xu, Adv. Mater. 2020, 32, 2003297;
- 9bG. Zhou, P. Wang, H. Li, B. Hu, Y. Sun, R. Huang, L. Liu, Nat. Commun. 2021, 12, 4827;
- 9cJ. Gracia, Phys. Chem. Chem. Phys. 2017, 19, 20451.
- 10B. Weng, M. Qi, C. Han, Z. Tang, Y. Xu, ACS Catal. 2019, 9, 4642–4687.
- 11T. Hang, C. Li, D. Liang, S. Li, H. Zhou, P. Ge, X. Zhu, T. Liu, Chem. Eng. J. 2022, 431, 133465.
- 12
- 12aG. Zhu, W. Zhu, Y. Lou, J. Ma, W. Yao, R. Zong, Y. Zhu, Nat. Commun. 2021, 12, 4152;
- 12bS. Rong, P. Zhang, F. Liu, Y. Yang, ACS Catal. 2019, 9, 3435–3446.
- 13T. Gao, P. Norby, F. Krumeich, H. Okamoto, R. Nesper, H. Fjellvag, J. Phys. Chem. C 2010, 114, 922–928.
- 14L. Liu, S. Xiong, X. Wu, Appl. Phys. Lett. 2016, 109, 061601.
- 15
- 15aB. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science 2021, 371, 830–834;
- 15bB. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science 2022, 377, 208–213.
- 16P. Sun, K. Kumar, M. Lyu, Z. Wang, J. Xiang, W. Zhang, Innovation 2021, 2, 100101.
- 17
- 17aH. Tan, J. Verbeeck, A. Abakumov, G. Tendeloo, Ultramicroscopy 2012, 116, 24;
- 17bC. Ma, N. Lin, Z. Wang, S. Zhou, H. Yu, J. Lu, H. Huang, Phys. Rev. B 2019, 99, 115401.
- 18
- 18aF. de Groot, J. Electron Spectrosc. Relat. Phenom. 1994, 67, 529;
- 18bD. Pease, A. Fasihuddin, M. Daniel, J. Budnick, Ultramicroscopy 2001, 88, 1.
- 19J. Goodenough, Scholarpedia 2008, 3, 7382.
10.4249/scholarpedia.7382 Google Scholar
- 20W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 2000, 62, 6869.
- 21W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247–251.
- 22
- 22aJ. Gracia, R. Sharpe, J. Munarriz, J. Catal. 2018, 361, 331–338;
- 22bC. Biz, M. Fianchini, J. Gracia, ACS Catal. 2021, 11, 14249–14261.
- 23J. Hwang, R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751–756.
- 24
- 24aZ. Xiao, Y. Huang, C. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J. Am. Chem. Soc. 2020, 142, 12087–12095;
- 24bJ. Wu, X. Wang, W. Zheng, Y. Sun, Y. Xie, K. Ma, Z. Zhang, Q. Liao, Z. Tian, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2022, 144, 19163–19172.
- 25Z. Xu, X. Men, Y. Shan, F. Liu, R. Xu, Y. Wang, Y. Shao, Y. Zhu, L. Liu, Chem. Eng. J. 2022, 432, 134330.
- 26
- 26aJ. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T. F. Jaramillo, Nat. Energy 2016, 1, 16053;
- 26bS. Yuan, J. Peng, B. Cai, Z. Huang, A. T. Garcia-Esparza, D. Sokaras, Y. Zhang, L. Giordano, K. Akkiraju, Y. Zhu, R. Hübner, X. Zou, Y. Román-Leshkov, Y. Shao-Horn, Nat. Mater. 2022, 21, 673–680.
- 27
- 27aT. Reier, H. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 2017, 7, 1601275;
- 27bZ. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329–338.
- 28
- 28aM. Scohy, S. Abbou, V. Martin, B. Gilles, E. Sibert, L. Dubau, F. Maillard, ACS Catal. 2019, 9, 9859–9869;
- 28bM. Rubel, R. Haasch, P. Mrozek, A. Wieckowski, C. Pauli, S. Trasatti, Vacuum 1994, 45, 423–427;
- 28cI. Martinson, L. Curtis, P. Smith, E. Biémont, Phys. Scr. 1977, 16, 35.