Excited-State THz Vibrations in Aggregates of PtII Complexes Contribute to the Enhancement of Near-Infrared Emission Efficiencies**
Correction(s) for this article
-
Corrigendum: Excited-State THz Vibrations in Aggregates of PtII Complexes Contribute to the Enhancement of Near-Infrared Emission Efficiencies
- Yu-Chen Wei,
- Bo-Han Chen,
- Ren-Siang Ye,
- Hsing-Wei Huang,
- Jia-Xuan Su,
- Chao-Yang Lin,
- Justin Hodgkiss,
- Lian-Yan Hsu,
- Yun Chi,
- Kai Chen,
- Chih-Hsuan Lu,
- Shang-Da Yang,
- Pi-Tai Chou,
- Volume 62Issue 36Angewandte Chemie International Edition
- First Published online: August 10, 2023
Yu-Chen Wei
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorBo-Han Chen
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorRen-Siang Ye
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHsing-Wei Huang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorJia-Xuan Su
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChao-Yang Lin
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012 New Zealand
Search for more papers by this authorJustin Hodgkiss
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010 New Zealand
Search for more papers by this authorLian-Yan Hsu
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
National Center for Theoretical Sciences, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yun Chi
Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, Hong Kong
Search for more papers by this authorCorresponding Author
Kai Chen
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012 New Zealand
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010 New Zealand
The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, 9016 New Zealand
Search for more papers by this authorCorresponding Author
Chih-Hsuan Lu
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Shang-Da Yang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYu-Chen Wei
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorBo-Han Chen
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorRen-Siang Ye
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHsing-Wei Huang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorJia-Xuan Su
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChao-Yang Lin
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012 New Zealand
Search for more papers by this authorJustin Hodgkiss
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010 New Zealand
Search for more papers by this authorLian-Yan Hsu
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
National Center for Theoretical Sciences, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yun Chi
Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, Hong Kong
Search for more papers by this authorCorresponding Author
Kai Chen
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012 New Zealand
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6010 New Zealand
The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, 9016 New Zealand
Search for more papers by this authorCorresponding Author
Chih-Hsuan Lu
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Shang-Da Yang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.21203/rs.3.rs-2118385/v1).
Graphical Abstract
A series of aggregate PtII complexes exhibits low-frequency (THz) excited-state vibrations measured by femtosecond-resolved transient absorption spectroscopy and transient grating photoluminescence spectroscopy. These significant low-frequency vibronic displacements suppress non-radiative decay and enhance near-infrared emission efficiencies.
Abstract
The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm−1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202300815-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Wu, Z. Shi, L. Zhu, J. Li, X. Han, M. Xu, S. Hao, Y. Fan, T. Shao, H. Bai, B. Peng, W. Hu, X. Liu, C. Yao, L. Li, W. Huang, Adv. Opt. Mater. 2022, 10, 2102514;
- 1bJ. Mu, M. Xiao, Y. Shi, X. Geng, H. Li, Y. Yin, X. Chen, Angew. Chem. Int. Ed. 2022, 61, e202114722; Angew. Chem. 2022, 134, e202114722;
- 1cY. Xiao, H. Wang, Z. Xie, M. Shen, R. Huang, Y. Miao, G. Liu, T. Yu, W. Huang, Chem. Sci. 2022, 13, 8906;
- 1dA. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623;
- 1eJ. H. Kim, T. Schembri, D. Bialas, M. Stolte, F. Würthner, Adv. Mater. 2022, 34, 2104678;
- 1fP. Data, P. Pander, M. Okazaki, Y. Takeda, S. Minakata, A. P. Monkman, Angew. Chem. Int. Ed. 2016, 55, 5739; Angew. Chem. 2016, 128, 5833.
- 2
- 2aO. P. Dimitriev, J. Zirzlmeier, A. Menon, Y. Slominskii, D. M. Guldi, J. Phys. Chem. C 2021, 125, 9855;
- 2bX. Bao, S. Zheng, L. Zhang, A. Shen, G. Zhang, S. Liu, J. Hu, Angew. Chem. Int. Ed. 2022, 61, e202207250; Angew. Chem. 2022, 134, e202207250;
- 2cJ. Qi, C. Sun, D. Li, H. Zhang, W. Yu, A. Zebibula, J. W. Y. Lam, W. Xi, L. Zhu, F. Cai, P. Wei, C. Zhu, R. T. K. Kwok, L. L. Streich, R. Prevedel, J. Qian, B. Z. Tang, ACS Nano 2018, 12, 7936;
- 2dK. Li, X. Duan, Z. Jiang, D. Ding, Y. Chen, G.-Q. Zhang, Z. Liu, Nat. Commun. 2021, 12, 2376;
- 2eA. Liess, A. Arjona-Esteban, A. Kudzus, J. Albert, A.-M. Krause, A. Lv, M. Stolte, K. Meerholz, F. Würthner, Adv. Funct. Mater. 2019, 29, 1805058;
- 2fJ. H. Kim, A. Liess, M. Stolte, A.-M. Krause, V. Stepanenko, C. Zhong, D. Bialas, F. Spano, F. Würthner, Adv. Mater. 2021, 33, 2100582;
- 2gC.-A. Shen, M. Stolte, J. H. Kim, A. Rausch, F. Würthner, J. Am. Chem. Soc. 2021, 143, 11946;
- 2hC.-A. Shen, D. Bialas, M. Hecht, V. Stepanenko, K. Sugiyasu, F. Würthner, Angew. Chem. Int. Ed. 2021, 60, 11949; Angew. Chem. 2021, 133, 12056;
- 2iZ. Chen, Y. Liu, W. Wagner, V. Stepanenko, X. Ren, S. Ogi, F. Würthner, Angew. Chem. Int. Ed. 2017, 56, 5729; Angew. Chem. 2017, 129, 5823.
- 3
- 3aS. Amemori, Y. Sasaki, N. Yanai, N. Kimizuka, J. Am. Chem. Soc. 2016, 138, 8702;
- 3bC. You, D. Liu, J. Yu, H. Tan, M. Zhu, B. Zhang, Y. Liu, Y. Wang, W. Zhu, Adv. Opt. Mater. 2020, 8, 2000154;
- 3cJ. Wu, Y. Li, C. Tan, X. Wang, Y. Zhang, J. Song, J. Qu, W.-Y. Wong, Chem. Commun. 2018, 54, 11144;
- 3dM. A. Bennett, S. K. Bhargava, E. C.-C. Cheng, W. H. Lam, T. K.-M. Lee, S. H. Privér, J. Wagler, A. C. Willis, V. W.-W. Yam, J. Am. Chem. Soc. 2010, 132, 7094;
- 3eY.-S. Wong, M. Ng, M. C.-L. Yeung, V. W.-W. Yam, J. Am. Chem. Soc. 2021, 143, 973;
- 3fJ. Y.-W. Yeung, F. K.-W. Kong, F. K.-W. Hau, M. H.-Y. Chan, M. Ng, M.-Y. Leung, V. W.-W. Yam, Angew. Chem. Int. Ed. 2022, 61, e202207313; Angew. Chem. 2022, 134, e202207313;
- 3gQ. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, B. E. Gnade, Adv. Mater. 2014, 26, 8107;
- 3hX. Yang, H. Guo, X. Xu, Y. Sun, G. Zhou, W. Ma, Z. Wu, Adv. Sci. 2019, 6, 1801930.
- 4
- 4aK. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photonics 2017, 11, 63;
- 4bS. F. Wang, Y. Yuan, Y.-C. Wei, W.-H. Chan, L.-W. Fu, B.-K. Su, I. Y. Chen, K.-J. Chou, P.-T. Chen, H.-F. Hsu, C.-L. Ko, W.-Y. Hung, C.-S. Lee, P.-T. Chou, Y. Chi, Adv. Funct. Mater. 2020, 30, 2002173;
- 4cY.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nat. Photonics 2020, 14, 570;
- 4dS.-F. Wang, B.-K. Su, X.-Q. Wang, Y.-C. Wei, K.-H. Kuo, C.-H. Wang, S.-H. Liu, L.-S. Liao, W.-Y. Hung, L.-W. Fu, W.-T. Chuang, M. Qin, X. Lu, C. You, Y. Chi, P.-T. Chou, Nat. Photonics 2022, 16, 843.
- 5
- 5aH. Ma, H. Yu, Q. Peng, Z. An, D. Wang, Z. Shuai, J. Phys. Chem. Lett. 2019, 10, 6948;
- 5bQ. Peng, Z. Shuai, Aggregate 2021, 2, e91;
- 5cT. Zhang, H. Ma, Y. Niu, W. Li, D. Wang, Q. Peng, Z. Shuai, W. Liang, J. Phys. Chem. C 2015, 119, 5040;
- 5dY. Jiang, Q. Peng, X. Gao, Z. Shuai, Y. Niu, S. H. Lin, J. Mater. Chem. 2012, 22, 4491;
- 5eG. Han, Y. Yi, Z. Shuai, Adv. Energy Mater. 2018, 8, 1702743.
- 6
- 6aC.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, A. H. Kung, Optica 2014, 1, 400;
- 6bC.-H. Lu, W.-H. Wu, S.-H. Kuo, J.-Y. Guo, M.-C. Chen, S.-D. Yang, A. H. Kung, Opt. Express 2019, 27, 15638;
- 6cR. R. Tamming, C.-Y. Lin, J. M. Hodgkiss, S.-D. Yang, K. Chen, C.-H. Lu, Sci. Rep. 2021, 11, 12847.
- 7
- 7aR. M. van der Veen, A. Cannizzo, F. van Mourik, A. Vlček, M. Chergui, J. Am. Chem. Soc. 2011, 133, 305;
- 7bK. Haldrup, G. Levi, E. Biasin, P. Vester, M. G. Laursen, F. Beyer, K. S. Kjær, T. Brandt van Driel, T. Harlang, A. O. Dohn, R. J. Hartsock, S. Nelson, J. M. Glownia, H. T. Lemke, M. Christensen, K. J. Gaffney, N. E. Henriksen, K. B. Møller, M. M. Nielsen, Phys. Rev. Lett. 2019, 122, 063001;
- 7cM. Iwamura, A. Fukui, K. Nozaki, H. Kuramochi, S. Takeuchi, T. Tahara, Angew. Chem. Int. Ed. 2020, 59, 23154; Angew. Chem. 2020, 132, 23354;
- 7dP. Kim, A. J. S. Valentine, S. Roy, A. W. Mills, A. Chakraborty, F. N. Castellano, X. Li, L. X. Chen, J. Phys. Chem. Lett. 2021, 12, 6794;
- 7eP. Kim, M. S. Kelley, A. Chakraborty, N. L. Wong, R. P. Van Duyne, G. C. Schatz, F. N. Castellano, L. X. Chen, J. Phys. Chem. C 2018, 122, 14195;
- 7fS. Cho, M. W. Mara, X. Wang, J. V. Lockard, A. A. Rachford, F. N. Castellano, L. X. Chen, J. Phys. Chem. A 2011, 115, 3990;
- 7gR. Monni, G. Capano, G. Auböck, H. B. Gray, A. Vlček, I. Tavernelli, M. Chergui, Proc. Natl. Acad. Sci. USA 2018, 115, E6396.
- 8
- 8aR. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses, Kluwer Academic, Boston, 2000;
- 8bR. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, D. J. Kane, Rev. Sci. Instrum. 1997, 68, 3277.
- 9F. R. Kohl, C. Grieco, B. Kohler, Chem. Sci. 2020, 11, 1248.
- 10M. Liebel, C. Schnedermann, T. Wende, P. Kukura, J. Phys. Chem. A 2015, 119, 9506.
- 11
- 11aM. Lejman, G. Vaudel, I. C. Infante, P. Gemeiner, V. E. Gusev, B. Dkhil, P. Ruello, Nat. Commun. 2014, 5, 4301;
- 11bH. C. Shih, L. Y. Chen, C. W. Luo, K. H. Wu, J. Y. Lin, J. Y. Juang, T. M. Uen, J. M. Lee, J. M. Chen, T. Kobayashi, New J. Phys. 2011, 13, 053003.
- 12K. Chen, J. K. Gallaher, A. J. Barker, J. M. Hodgkiss, J. Phys. Chem. Lett. 2014, 5, 1732.
- 13
- 13aM. Chergui, Acc. Chem. Res. 2015, 48, 801;
- 13bM. Chergui, Dalton Trans. 2012, 41, 13022;
- 13cF. Messina, E. Pomarico, M. Silatani, E. Baranoff, M. Chergui, J. Phys. Chem. Lett. 2015, 6, 4475;
- 13dM. Chergui, Pure Appl. Chem. 2015, 87, 525.
- 14
- 14aY. Yoneda, B. Kudisch, S. Rafiq, M. Maiuri, Y. Nagasawa, G. D. Scholes, H. Miyasaka, J. Am. Chem. Soc. 2021, 143, 14511;
- 14bM. S. Barclay, J. S. Huff, R. D. Pensack, P. H. Davis, W. B. Knowlton, B. Yurke, J. C. Dean, P. C. Arpin, D. B. Turner, J. Phys. Chem. Lett. 2022, 13, 5413;
- 14cG. Lee, J. Kim, S. Y. Kim, D. E. Kim, T. Joo, ChemPhysChem 2017, 18, 670.
- 15R. Englman, J. Jortner, Mol. Phys. 1970, 18, 145.
- 16D. D. Dlott, M. D. Fayer, J. Chem. Phys. 1990, 92, 3798.
- 17W.-C. Chen, P.-T. Chou, Y.-C. Cheng, J. Phys. Chem. C 2019, 123, 10225.
- 18
- 18aC. C. Tong, K. C. Hwang, J. Phys. Chem. C 2007, 111, 3490;
- 18bH. J. Bae, J. S. Kim, A. Yakubovich, J. Jeong, S. Park, J. Chwae, S. Ishibe, Y. Jung, V. K. Rai, W.-J. Son, S. Kim, H. Choi, M.-H. Baik, Adv. Opt. Mater. 2021, 9, 2100630;
- 18cW. Li, A. Wu, T. Fu, X. Gao, Y. Wang, D. Xu, C. Zhang, Z. Sun, Y. Lu, D. J. Young, H. Li, X.-C. Hang, J. Phys. Chem. Lett. 2022, 13, 1494.
- 19
- 19aJ. A. Spies, J. Neu, U. T. Tayvah, M. D. Capobianco, B. Pattengale, S. Ostresh, C. A. Schmuttenmaer, J. Phys. Chem. C 2020, 124, 22335;
- 19bA. I. McIntosh, B. Yang, S. M. Goldup, M. Watkinson, R. S. Donnan, Chem. Soc. Rev. 2012, 41, 2072.
- 20K. Chen, C. Kunkel, K. Reuter, J. T. Margraf, Digi. Discovery 2022, 1, 147.
- 21Y. Wang, J. Ren, Z. Shuai, J. Chem. Phys. 2021, 154, 214109.