f-block MOFs: A Pathway to Heterometallic Transuranics
Kyoung Chul Park
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorProf. Dr. Preecha Kittikhunnatham
Department of Chemistry, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorDr. Jaewoong Lim
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorGrace C. Thaggard
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorYuan Liu
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Corey R. Martin
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Gabrielle A. Leith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDonald J. Toler
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDr. An T. Ta
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Nancy Birkner
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 USA
Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634 USA
Search for more papers by this authorDr. Ingrid Lehman-Andino
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Alejandra Hernandez-Jimenez
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Gregory Morrison
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDr. Jake W. Amoroso
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorProf. Dr. Hans-Conrad zur Loye
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Dave P. DiPrete
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Mark D. Smith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorProf. Dr. Kyle S. Brinkman
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 USA
Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634 USA
Search for more papers by this authorProf. Dr. Simon R. Phillpot
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Natalia B. Shustova
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorKyoung Chul Park
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorProf. Dr. Preecha Kittikhunnatham
Department of Chemistry, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorDr. Jaewoong Lim
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorGrace C. Thaggard
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorYuan Liu
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Corey R. Martin
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Gabrielle A. Leith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDonald J. Toler
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDr. An T. Ta
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Nancy Birkner
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 USA
Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634 USA
Search for more papers by this authorDr. Ingrid Lehman-Andino
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Alejandra Hernandez-Jimenez
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Gregory Morrison
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorDr. Jake W. Amoroso
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorProf. Dr. Hans-Conrad zur Loye
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Dave P. DiPrete
Savannah River National Laboratory, Aiken, SC 29808 USA
Search for more papers by this authorDr. Mark D. Smith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorProf. Dr. Kyle S. Brinkman
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 USA
Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634 USA
Search for more papers by this authorProf. Dr. Simon R. Phillpot
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Natalia B. Shustova
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
Search for more papers by this authorGraphical Abstract
Like baking cookies to personal taste, preparation of a library of heterometallic actinide-MOFs allows for tailoring of the “flavor” of material properties. Mixing the radionuclide ingredients in proper ratios reveals structure–property relationships and unique design principles for new classes of actinide-based materials. In addition, the prepared frameworks provide a recipe for novel, pre-designed transuranic MOFs.
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238U/239Pu-metal–organic frameworks (MOFs) and a novel monometallic 239Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202216349-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
anie202216349-sup-0001-SI_Pu-Me2BPDC-12.cif156.3 KB | Supporting Information |
anie202216349-sup-0001-SI_Th-BPyDC-12.cif5.8 MB | Supporting Information |
anie202216349-sup-0001-SI_U-Me2BPDC-8.cif3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. A. Dolgopolova, O. A. Ejegbavwo, C. R. Martin, M. D. Smith, W. Setyawan, S. G. Karakalos, C. H. Henager, H.-C. zur Loye, N. B. Shustova, J. Am. Chem. Soc. 2017, 139, 16852–16861.
- 2Y. Wang, Y. Li, Z. Bai, C. Xiao, Z. Liu, W. Liu, L. Chen, W. He, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, Dalton Trans. 2015, 44, 18810–18814.
- 3A.-G. D. Nelson, T. H. Bray, F. A. Stanley, T. E. Albrecht-Schmitt, Inorg. Chem. 2009, 48, 4530–4535.
- 4G. T. Kent, X. Yu, C. Pauly, G. Wu, J. Autschbach, T. W. Hayton, Inorg. Chem. 2021, 60, 15413–15420.
- 5S. L. Staun, G. Wu, W. W. Lukens, T. W. Hayton, Chem. Sci. 2021, 12, 15519–15527.
- 6E. J. Schelter, R. Wu, B. L. Scott, J. D. Thompson, D. E. Morris, J. L. Kiplinger, Angew. Chem. Int. Ed. 2008, 47, 2993–2996; Angew. Chem. 2008, 120, 3035–3038.
- 7C. Tamain, B. A. Chapelet, M. Rivenet, F. Abraham, R. Caraballo, S. Grandjean, Inorg. Chem. 2013, 52, 4941–4949.
- 8A.-G. D. Nelson, T. H. Bray, T. E. Albrecht-Schmitt, Angew. Chem. Int. Ed. 2008, 47, 6252–6254; Angew. Chem. 2008, 120, 6348–6350.
- 9P. L. Arnold, M. S. Dutkiewicz, M. Zegke, O. Walter, C. Apostolidis, E. Hollis, A.-F. Pécharman, N. Magnani, J.-C. Griveau, E. Colineau, R. Caciuffo, X. Zhang, G. Schreckenbach, J. B. Love, Angew. Chem. Int. Ed. 2016, 55, 12797–12801; Angew. Chem. 2016, 128, 12989–12993.
- 10I. A. Charushnikova, N. N. Krot, M. S. Grigor'ev, Radiochemistry 2014, 56, 468–475.
- 11J. Rebizant, C. Apostolidis, M. R. Spirlet, B. Kanellakopulos, Inorg. Chim. Acta 1987, 139, 209–210.
- 12P. Li, N. A. Vermeulen, C. D. Malliakas, D. A. Gómez-Gualdrón, A. J. Howarth, B. L. Mehdi, A. Dohnalkova, N. D. Browning, M. O'Keeffe, O. K. Farha, Science 2017, 356, 624–627.
- 13Z. Chen, P. Li, X. Zhang, M. R. Mian, X. Wang, P. Li, Z. Liu, M. O'keeffe, J. F. Stoddart, O. K. Farha, Nano Res. 2021, 14, 376–380.
- 14P. Li, N. A. Vermeulen, X. Gong, C. D. Malliakas, J. F. Stoddart, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2016, 55, 10358–10362; Angew. Chem. 2016, 128, 10514–10518.
- 15S. L. Hanna, D. X. Rademacher, D. J. Hanson, T. Islamoglu, A. K. Olszewski, T. M. Nenoff, O. K. Farha, Ind. Eng. Chem. Res. 2020, 59, 7520–7526.
- 16S. E. Gilson, M. Fairley, P. Julien, A. G. Oliver, S. L. Hanna, G. Arntz, O. K. Farha, J. A. LaVerne, P. C. Burns, J. Am. Chem. Soc. 2020, 142, 13299–13304.
- 17L. J. Small, T. M. Nenoff, ACS Appl. Mater. Interfaces 2017, 9, 44649–44655.
- 18L. Cheng, C. Liang, W. Liu, Y. Wang, B. Chen, H. Zhang, Y. Wang, Z. Chai, S. Wang, J. Am. Chem. Soc. 2020, 142, 16218–16222.
- 19J. Li, B. Li, N. Shen, L. Chen, Q. Guo, L. Chen, L. He, X. Dai, Z. Chai, S. Wang, ACS Cent. Sci. 2021, 7, 1441–1450.
- 20O. A. Ejegbavwo, C. R. Martin, O. A. Olorunfemi, G. A. Leith, R. T. Ly, A. M. Rice, E. A. Dolgopolova, M. D. Smith, S. G. Karakalos, N. Birkner, B. A. Powell, S. Pandey, R. J. Koch, S. T. Misture, H.-C. zur Loye, S. R. Phillpot, K. S. Brinkman, N. B. Shustova, J. Am. Chem. Soc. 2019, 141, 11628–11640.
- 21B. Li, X. Dong, H. Wang, D. Ma, K. Tan, S. Jensen, B. J. Deibert, J. Butler, J. Cure, Z. Shi, T. Thonhauser, Y. J. Chabal, Y. Han, J. Li, Nat. Commun. 2017, 8, 485.
- 22B. Li, X. Dong, H. Wang, D. Ma, K. Tan, Z. Shi, Y. J. Chabal, Y. Han, J. Li, Faraday Discuss. 2017, 201, 47–61.
- 23L. Yang, M. Dincă, Angew. Chem. Int. Ed. 2021, 60, 23784–23789; Angew. Chem. 2021, 133, 23977–23982.
- 24H. Banda, J.-H. Dou, T. Chen, N. J. Libretto, M. Chaudhary, G. M. Bernard, J. T. Miller, V. K. Michaelis, M. Dincă, J. Am. Chem. Soc. 2021, 143, 2285–2292.
- 25J. Y. Choi, J. Flood, M. Stodolka, H. T. B. Pham, J. Park, ACS Nano 2022, 16, 3145–3151.
- 26S. M. Cohen, N. L. Rosi, Inorg. Chem. 2021, 60, 11703–11705.
- 27M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani, S. M. Cohen, Chem. Commun. 2019, 55, 3481–3484.
- 28H. Yang, F. Peng, A. N. Hong, Y. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2021, 143, 14470–14474.
- 29H. Yang, F. Peng, D. E. Schier, S. A. Markotic, X. Zhao, A. N. Hong, Y. Wang, P. Feng, X. Bu, Angew. Chem. Int. Ed. 2021, 60, 11148–11152; Angew. Chem. 2021, 133, 11248–11252.
- 30H. Yang, M. Luo, L. Luo, H. Wang, D. Hu, J. Lin, X. Wang, Y. Wang, S. Wang, X. Bu, P. Feng, T. Wu, Chem. Mater. 2016, 28, 8774–8780.
- 31M. Zhang, C. Liang, G.-D. Cheng, J. Chen, Y. Wang, L. He, L. Cheng, S. Gong, D. Zhang, J. Li, S.-X. Hu, J. Diwu, G. Wu, Y. Wang, Z. Chai, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 9886–9890; Angew. Chem. 2021, 133, 9974–9978.
- 32R. Hardian, S. Dissegna, A. Ullrich, P. L. Llewellyn, M.-V. Coulet, R. A. Fischer, Chem. Eur. J. 2021, 27, 6804–6814.
- 33W. R. Heinz, I. Agirrezabal-Telleria, R. Junk, J. Berger, J. Wang, D. I. Sharapa, M. Gil-Calvo, I. Luz, M. Soukri, F. Studt, Y. Wang, C. Wöll, H. Bunzen, M. Drees, R. A. Fischer, ACS Appl. Mater. Interfaces 2020, 12, 40635–40647.
- 34K. D. Nguyen, C. Kutzscher, F. Drache, I. Senkovska, S. Kaskel, Inorg. Chem. 2018, 57, 1483–1489.
- 35B. Felsner, V. Bon, J. D. Evans, F. Schwotzer, R. Grünker, I. Senkovska, S. Kaskel, Chem. Eur. J. 2021, 27, 9708–9715.
- 36C. Michel, Y. Barré, L. De Windt, C. de Dieuleveult, E. Brackx, A. Grandjean, J. Environ. Chem. Eng. 2017, 5, 810–817.
- 37T. le Nedelec, A. Charlot, F. Calard, F. Cuer, A. Leydier, A. Grandjean, New J. Chem. 2018, 42, 14300–14307.
- 38V. Villemot, N. Dufour, S. Mauree, B. Sabot, G. H. V. Bertrand, M. Hamel, Adv. Photonics Res. 2022, 3, 2100259.
- 39K. C. Park, C. R. Martin, G. A. Leith, G. C. Thaggard, G. R. Wilson, B. J. Yarbrough, B. K. P. Maldeni Kankanamalage, P. Kittikhunnatham, A. Mathur, I. Jatoi, M. A. Manzi, J. Lim, I. Lehman-Andino, A. Hernandez-Jimenez, J. W. Amoroso, D. P. DiPrete, Y. Liu, J. Schaeperkoetter, S. T. Misture, S. R. Phillpot, S. Hu, Y. Li, A. Leydier, V. Proust, A. Grandjean, M. D. Smith, N. B. Shustova, J. Am. Chem. Soc. 2022, 144, 16139–16149.
- 40K. Lv, S. Fichter, M. Gu, J. März, M. Schmidt, Coord. Chem. Rev. 2021, 446, 214011.
- 41C. R. Martin, G. A. Leith, N. B. Shustova, Chem. Sci. 2021, 12, 7214–7230.
- 42E. A. Dolgopolova, A. M. Rice, N. B. Shustova, Chem. Commun. 2018, 54, 6472–6483.
- 43H.-C. zur Loye, T. Besmann, J. Amoroso, K. Brinkman, C. H. Henager, S. Hu, S. T. Misture, S. R. Phillpot, N. B. Shustova, H. Wang, R. J. Koch, G. Morrison, E. Dolgopolova, Chem. Mater. 2018, 30, 4475–4488.
- 44S. E. Gilson, P. Li, J. E. S. Szymanowski, J. White, D. Ray, L. Gagliardi, O. K. Farha, P. C. Burns, J. Am. Chem. Soc. 2019, 141, 11842–11846.
- 45S. E. Gilson, M. Fairley, S. L. Hanna, J. E. S. Szymanowski, P. Julien, Z. Chen, O. K. Farha, J. A. LaVerne, P. C. Burns, J. Am. Chem. Soc. 2021, 143, 17354–17359.
- 46L. S. Natrajan, Coord. Chem. Rev. 2012, 256, 1583–1603.
- 47B. G. Wybourne, L. Smentek, J. Alloys Compd. 2002, 341, 71–75.
- 48P. Zhang, H. Liu, W. Zou, P. Zhang, S.-X. Hu, J. Phys. Chem. A 2020, 124, 8173–8183.
- 49K. Lv, C. Urbank, M. Patzschke, J. März, P. Kaden, S. Weiss, M. Schmidt, J. Am. Chem. Soc. 2022, 144, 2879–2884.
- 50J. Liu, L. R. Redfern, Y. Liao, T. Islamoglu, A. Atilgan, O. K. Farha, J. T. Hupp, ACS Appl. Mater. Interfaces 2019, 11, 47822–47829.
- 51C. R. Martin, G. A. Leith, P. Kittikhunnatham, K. C. Park, O. A. Ejegbavwo, A. Mathur, C. R. Callahan, S. L. Desmond, M. R. Keener, F. Ahmed, S. Pandey, M. D. Smith, S. R. Phillpot, A. B. Greytak, N. B. Shustova, Angew. Chem. Int. Ed. 2021, 60, 8072–8080; Angew. Chem. 2021, 133, 8152–8160.
- 52S. M. Cohen, Chem. Rev. 2012, 112, 970–1000.
- 53Y. Lee, S. Kim, J. K. Kang, S. M. Cohen, Chem. Commun. 2015, 51, 5735–5738.
- 54M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, O. K. Farha, J. Mater. Chem. A 2013, 1, 5453–5468.
- 55J. Park, D. Feng, H.-C. Zhou, J. Am. Chem. Soc. 2015, 137, 11801–11809.
- 56C. K. Brozek, V. K. Michaelis, T.-C. Ong, L. Bellarosa, N. López, R. G. Griffin, M. Dincǎ, ACS Cent. Sci. 2015, 1, 252–260.
- 57A. W. Stubbs, L. Braglia, E. Borfecchia, R. J. Meyer, Y. Román-Leshkov, C. Lamberti, M. Dincǎ, ACS Catal. 2018, 8, 596–601.
- 58B. Garai, V. Bon, S. Krause, F. Schwotzer, M. Gerlach, I. Senkovska, S. Kaskel, Chem. Mater. 2020, 32, 889–896.
- 59X. Sun, C. Samples, K. Daia, M. Meyers, M. Bumgarner, J. Chem. Res. 2009, 351–355.
- 60X. Sun, D. R. J. Kolling, H. Mazagri, B. Karawan, C. Pierron, Inorg. Chim. Acta 2015, 435, 117–124.
- 61D. L. Clark, S. D. Conradson, R. J. Donohoe, D. W. Keogh, D. E. Morris, P. D. Palmer, R. D. Rogers, C. D. Tait, Inorg. Chem. 1999, 38, 1456–1466.
- 62A. A. Berseneva, C. R. Martin, V. A. Galitskiy, O. A. Ejegbavwo, G. A. Leith, R. T. Ly, A. M. Rice, E. A. Dolgopolova, M. D. Smith, H.-C. zur Loye, D. P. Diprete, J. W. Amoroso, N. B. Shustova, Inorg. Chem. 2020, 59, 179–183.
- 63Y. Zhang, K. P. Hart, W. L. Bourcier, R. A. Day, M. Colella, B. Thomas, Z. Aly, A. Jostsons, J. Nucl. Mater. 2001, 289, 254–262.
- 64C. G. Varelas, D. G. Dixon, C. A. Steiner, J. Controlled Release 1995, 34, 185–192.
- 65F. Faraji, A. Alizadeh, F. Rashchi, N. Mostoufi, Rev. Chem. Eng. 2022, 38, 113–148.
- 66H. Huang, H. Sato, T. Aida, J. Am. Chem. Soc. 2017, 139, 8784–8787.
- 67M. N. Freitas, J. M. Marchetti, Int. J. Pharm. 2005, 295, 201–211.
- 68M. Rand, J. Fuger, I. Grenthe, V. Neck, D. Rai, Chemical Thermodynamics of Thorium in Chemical Thermodynamics, OECD publishing, Paris, 2008.
- 69R. Guillaumont, T. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe, M. H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium in Chemical Thermodynamics, OECD publishing, Paris, 2008.
- 70B. Ruscic, D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network, Argonne National Laboratory, 2016.
- 71S. Pandey, B. Demaske, O. A. Ejegbavwo, A. A. Berseneva, W. Setyawan, N. B. Shustova, S. R. Phillpot, Comput. Mater. Sci. 2020, 184, 109903.
- 72H. Wang, Q. Wu, X. Ding, Z. Shao, W. Xu, Y. Zhao, Q. Xie, X. Meng, H. Hou, Inorg. Chem. 2020, 59, 8361–8368.
- 73H.-N. Wang, H.-X. Sun, Y.-M. Fu, X. Meng, Y.-H. Zou, Y.-O. He, R.-G. Yang, Inorg. Chem. Front. 2021, 8, 4062–4071.
- 74K.-I. Otake, K. Otsubo, K. Sugimoto, A. Fujiwara, H. Kitagawa, Angew. Chem. Int. Ed. 2016, 55, 6448–6451; Angew. Chem. 2016, 128, 6558–6561.
- 75H. ŌKawa, M. Sadakiyo, K. Otsubo, K. Yoneda, T. Yamada, M. Ohba, H. Kitagawa, Inorg. Chem. 2015, 54, 8529–8535.
- 76H. ŌKawa, M. Sadakiyo, T. Yamada, M. Maesato, M. Ohba, H. Kitagawa, J. Am. Chem. Soc. 2013, 135, 2256–2262.
- 77H. ŌKawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda, M. Ohba, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 13516–13522.
- 78M. Sadakiyo, H. ŌKawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472–5475.
- 79W. H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li, C.-W. Kung, ACS Appl. Mater. Interfaces 2021, 13, 55358–55366.
- 80N. Ko, J. Hong, S. Sung, K. E. Cordova, H. J. Park, J. K. Yang, J. Kim, Dalton Trans. 2015, 44, 2047–2051.
- 81Deposition numbers 2209989, 2209990 and 2209991 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.