Bioinspired Gradient Stretchable Aerogels for Ultrabroad-Range-Response Pressure-Sensitive Wearable Electronics and High-Efficient Separators
Xiaoyu Zhang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorZhenyu Hu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorQi Sun
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorXing Liang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorPuzhong Gu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorJia Huang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorCorresponding Author
Guoqing Zu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorXiaoyu Zhang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorZhenyu Hu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorQi Sun
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorXing Liang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorPuzhong Gu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorJia Huang
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorCorresponding Author
Guoqing Zu
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 P.R. China
Search for more papers by this authorGraphical Abstract
Gradient, stretchable and superelastic reduced graphene oxide/polyurethane nanocomposite aerogels have been achieved by a sol-gel/hot pressing/freeze casting/ambient pressure drying strategy. The gradient aerogels can be used for high-efficient separators and wearable electronics with an ultrabroad detection range of 1 Pa–12.6 MPa and ultrahigh fatigue resistance, showing great potentials in high-performance sensors and separators.
Abstract
Broad-range-response pressure-sensitive wearable electronics are urgently needed but their preparation remains a challenge. Herein, we report unprecedented bioinspired wearable electronics based on stretchable and superelastic reduced graphene oxide/polyurethane nanocomposite aerogels with gradient porous structures by a sol-gel/hot pressing/freeze casting/ambient pressure drying strategy. The gradient structure with a hot-pressed layer promotes strain transfer and resistance variation under high pressures, leading to an ultrabroad detection range of 1 Pa–12.6 MPa, one of the broadest ranges ever reported. They can withstand 10 000 compression cycles under 1 MPa, which can't be achieved by traditional flexible pressure sensors. They can be applied for broad-range-response electronic skins and monitoring various physical signals/motions and ultrahigh pressures of automobile tires. Moreover, the gradient aerogels can be used as high-efficient gradient separators for water purification.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202213952-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
anie202213952-sup-0001-SI_Movie_S1.mp41,002.4 KB | Supporting Information |
anie202213952-sup-0001-SI_Movie_S2.mp41.6 MB | Supporting Information |
anie202213952-sup-0001-SI_Movie_S3.mp4900.3 KB | Supporting Information |
anie202213952-sup-0001-SI_Movie_S4.mp48 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Acc. Chem. Res. 2019, 52, 523;
- 1bX. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z. L. Wang, Adv. Sci. 2015, 2, 1500169.
- 2
- 2aY. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu, W. Asghar, F. Li, Z. Yu, J. Shang, G. Liu, M. Liao, R.-W. Li, Sci. Robot. 2018, 3, eaat0429;
- 2bY. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao, W. Li, Y. Wu, L. Liu, F. Yan, Adv. Mater. 2021, 33, 2008486;
- 2cC. Yang, Z. Suo, Nat. Rev. Mater. 2018, 3, 125;
- 2dS. Jung, J. H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.-H. Kim, Adv. Mater. 2014, 26, 4825;
- 2eH. Guo, Y. J. Tan, G. Chen, Z. Wang, G. J. Susanto, H. H. See, Z. Yang, Z. W. Lim, L. Yang, B. C. K. Tee, Nat. Commun. 2020, 11, 5747;
- 2fD. Jiang, J. Zhang, S. Qin, Z. Wang, K. A. S. Usman, D. Hegh, J. Liu, W. Lei, J. M. Razal, ACS Nano 2021, 15, 5000;
- 2gY. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Adv. Mater. 2016, 28, 9512.
- 3J.-Y. Sun, C. Keplinger, G. M. Whitesides, Z. Suo, Adv. Mater. 2014, 26, 7608.
- 4A. Chortos, J. Liu, Z. Bao, Nat. Mater. 2016, 15, 937.
- 5Z. Liu, M. A. Meyers, Z. Zhang, R. O. Ritchie, Prog. Mater. Sci. 2017, 88, 467.
- 6
- 6aJ. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Sci. Adv. 2015, 1, e1500661;
- 6bY. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 2018, 12, 4045;
- 6cG. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, K. Cho, Adv. Mater. 2016, 28, 5300;
- 6dN. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, C. F. Guo, Nat. Commun. 2020, 11, 209;
- 6eC. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, Z. Bao, Sci. Robot. 2018, 3, eaau6914;
- 6fM. Ha, S. Lim, S. Cho, Y. Lee, S. Na, C. Baig, H. Ko, ACS Nano 2018, 12, 3964.
- 7
- 7aH. Zhou, J. Lai, B. Zheng, X. Jin, G. Zhao, H. Liu, W. Chen, A. Ma, X. Li, Y. Wu, Adv. Funct. Mater. 2022, 32, 2108423;
- 7bS. Zeng, J. Zhang, G. Zu, J. Huang, Carbohydr. Polym. 2021, 267, 118198.
- 8H.-B. Yao, J. Ge, C.-F. Wang, X. Wang, W. Hu, Z.-J. Zheng, Y. Ni, S.-H. Yu, Adv. Mater. 2013, 25, 6692.
- 9F. Guan, Y. Xie, H. Wu, Y. Meng, Y. Shi, M. Gao, Z. Zhang, S. Chen, Y. Chen, H. Wang, Q. Pei, ACS Nano 2020, 14, 15428.
- 10X. Guan, Z. Wang, W. Zhao, H. Huang, S. Wang, Q. Zhang, D. Zhong, W. Lin, N. Ding, Z. Peng, ACS Appl. Mater. Interfaces 2020, 12, 26137.
- 11
- 11aS. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert, A. Bonnin, S. Galmarini, M. Ganobjak, Z. Pan, S. Brunner, G. Nystroem, J. Wang, M. M. Koebel, W. J. Malfait, Nature 2020, 584, 387;
- 11bX. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin, L. Peng, T. Wang, X. Ren, C. Wang, Z. Zhao, C. Wan, H. Fei, L. Wang, J. Zhu, H. Sun, W. Chen, T. Du, B. Deng, G. J. Cheng, I. Shakir, C. Dames, T. S. Fisher, X. Zhang, H. Li, Y. Huang, X. Duan, Science 2019, 363, 723.
- 12
- 12aC. Zhu, T. Y.-J. Han, E. B. Duoss, A. M. Golobic, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley, Nat. Commun. 2015, 6, 6962;
- 12bF. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang, Y. Liu, W. Gao, P. Zhao, H. Wang, C. Gao, Nat. Commun. 2018, 9, 881;
- 12cG. Zu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Angew. Chem. 2018, 130, 9870;
10.1002/ange.201804559 Google Scholar
- 12dY. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, J. Li, Y. Yuan, X. He, Y. Li, ACS Nano 2015, 9, 8933;
- 12eH. Tetik, J. Orangi, G. Yang, K. Zhao, S. Bin Mujib, G. Singh, M. Beidaghi, D. Lin, Adv. Mater. 2022, 34, 2104980.
- 13
- 13aY. Tian, J. Han, J. Yang, H. Wu, H. Bai, Adv. Mater. Interfaces 2021, 8, 2100511;
- 13bH. Kong, Z. Song, W. Li, Y. Bao, D. Qu, Y. Ma, Z. Liu, W. Wang, Z. Wang, D. Han, L. Niu, ACS Nano 2021, 15, 16218.
- 14
- 14aG. Zu, K. Kanamori, K. Nakanishi, X. Lu, K. Yu, J. Huang, H. Sugimura, ACS Appl. Mater. Interfaces 2019, 11, 43533;
- 14bH.-L. Gao, Z.-Y. Wang, C. Cui, J.-Z. Bao, Y.-B. Zhu, J. Xia, S.-M. Wen, H.-A. Wu, S.-H. Yu, Adv. Mater. 2021, 33, 2102724;
- 14cP. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia, X.-P. Li, Z.-Z. Yu, Adv. Funct. Mater. 2021, 31, 2103703.
- 15X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu, R. Jiang, B. Wu, H.-A. Wu, H. Zheng, J. Wang, X. Ji, Y. Chen, J. Liang, Nat. Commun. 2022, 13, 1119.
- 16
- 16aS. M. Seraji, X. Jin, Z. Yi, C. Feng, N. V. Salim, Nano Res. 2021, 14, 2620;
- 16bZ. Yue, Y. Zhu, J. Xia, Y. Wang, X. Ye, H. Jiang, H. Jia, Y. Lin, C. Jia, ACS Appl. Electron. Mater. 2021, 3, 1301.
- 17Y. Lee, J. Myoung, S. Cho, J. Park, J. Kim, H. Lee, Y. Lee, S. Lee, C. Baig, H. Ko, ACS Nano 2021, 15, 1795.
- 18S. Song, C. Zhang, W. Li, J. Wang, P. Rao, J. Wang, T. Li, Y. Zhang, Nano Energy 2022, 100, 107513.
- 19B. Ji, Q. Zhou, B. Hu, J. Zhong, J. Zhou, B. Zhou, Adv. Mater. 2021, 33, 2100859.
- 20G. Trovati, E. A. Sanches, S. C. Neto, Y. P. Mascarenhas, G. O. Chierice, J. Appl. Polym. Sci. 2010, 115, 263.
- 21C. Li, D. Jiang, H. Liang, B. Huo, C. Liu, W. Yang, J. Liu, Adv. Funct. Mater. 2018, 28, 1704674.
- 22Q. Liu, Y. Liu, J. Shi, Z. Liu, Q. Wang, C. F. Guo, Nano-Micro Lett. 2022, 14, 21.
- 23Y. Ni, J. Huang, S. Li, X. Dong, T. Zhu, W. Cai, Z. Chen, Y. Lai, ACS Appl. Mater. Interfaces 2021, 13, 53271.
- 24
- 24aG. Zu, K. Kanamori, K. Nakanishi, J. Huang, Chem. Mater. 2019, 31, 6276;
- 24bL. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, ACS Nano 2020, 14, 10633.
- 25
- 25aK. Nie, Z. Wang, R. Tang, L. Zheng, C. Li, X. Shen, Q. Sun, ACS Appl. Mater. Interfaces 2020, 12, 43024;
- 25bD. Lei, Q. Zhang, N. Liu, T. Su, L. Wang, Z. Ren, Y. Gao, Adv. Funct. Mater. 2022, 32, 2108856;
- 25cP. Yang, Y. Shi, S. Li, X. Tao, Z. Liu, X. Wang, Z. L. Wang, X. Chen, ACS Nano 2022, 16, 4654.
- 26M. Jia, C. Yi, Y. Han, L. Wang, X. Li, G. Xu, K. He, N. Li, Y. Hou, Z. Wang, Y. Zhu, Y. Zhang, M. Hu, R. Sun, P. Tong, J. Yang, Y. Hu, Z. Wang, W. Li, W. Li, L. Wei, C. Yang, M. Chen, Adv. Sci. 2022, 9, 2105738.