A Polyfluoroalkyl-Containing Non-fullerene Acceptor Enables Self-Stratification in Organic Solar Cells
Shihao Chen
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ling Hong
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMinghao Dong
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorDr. Wanyuan Deng
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorLin Shao
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYuanqing Bai
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Kai Zhang
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chunchen Liu
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Hongbin Wu
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Fei Huang
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorShihao Chen
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ling Hong
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorMinghao Dong
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorDr. Wanyuan Deng
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorLin Shao
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYuanqing Bai
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Kai Zhang
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chunchen Liu
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Hongbin Wu
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Fei Huang
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorGraphical Abstract
A polyfluoroalkyl-containing guest acceptor (EH-C8F17) enables self-stratification in the active layer of bulk-heterojunction organic solar cells. The favorable vertical phase separation and molecular stacking increases the mobility, increases carrier lifetimes, and reduces trap-assisted recombination, leading to significantly improved device performance.
Abstract
The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self-stratification active layer is realised by adding a novel polyfluoroalkyl-containing non-fullerene small-molecule acceptor (NFSMA), EH-C8F17, as the guest into PM6:BTP-eC9 blend. A favourable vertical morphology was obtained with an upper acceptor-enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH-C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self-stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl-containing NFSMA-assisted self-stratification within the active layer is effective for realising an ideal morphology for high-performance OSCs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202213869-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447–3507;
- 1bW. Huang, P. Cheng, Y. Yang, G. Li, Y. Yang, Adv. Mater. 2018, 30, 1705706;
- 1cC. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, S. P. Williams, Adv. Mater. 2010, 22, 3839–3856;
- 1dJ.-Y. Fan, Z.-X. Liu, J. Rao, K. Yan, Z. Chen, Y. Ran, B. Yan, J. Yao, G. Lu, H. Zhu, C.-Z. Li, H. Chen, Adv. Mater. 2022, 34, 2110569;
- 1eR. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, J. Min, Joule 2020, 4, 407–419.
- 2
- 2aL. Lu, L. Yu, Adv. Mater. 2014, 26, 4413–4430;
- 2bY. Liu, B. Liu, C.-Q. Ma, F. Huang, G. Feng, H. Chen, J. Hou, L. Yan, Q. Wei, Q. Luo, Q. Bao, W. Ma, W. Liu, W. Li, X. Wan, X. Hu, Y. Han, Y. Li, Y. Zhou, Y. Zou, Y. Chen, Y. Li, Y. Chen, Z. Tang, Z. Hu, Z.-G. Zhang, Z. Bo, Sci. China Chem. 2022, 65, 224–268.
- 3J. Wang, X. Zhan, Acc. Chem. Res. 2021, 54, 132–143.
- 4Q. Wei, W. Liu, M. Leclerc, J. Yuan, H. Chen, Y. Zou, Sci. China Chem. 2020, 63, 1352–1366.
- 5
- 5aS. Venkatesan, N. Adhikari, J. Chen, E. C. Ngo, A. Dubey, D. W. Galipeau, Q. Qiao, Nanoscale 2014, 6, 1011–1019;
- 5bX. Wang, Z. Du, K. Dou, H. Jiang, C. Gao, L. Han, R. Yang, Adv. Energy Mater. 2019, 9, 1802530.
- 6
- 6aX. Xu, Y. Li, Q. Peng, Adv. Mater. 2021, 34, 2107476;
- 6bL. Ye, K. Weng, J. Xu, X. Du, S. Chandrabose, K. Chen, J. Zhou, G. Han, S. Tan, Z. Xie, Y. Yi, N. Li, F. Liu, J. M. Hodgkiss, C. J. Brabec, Y. Sun, Nat. Commun. 2020, 11, 6005;
- 6cS. Chen, L. Feng, T. Jia, J. Jing, Z. Hu, K. Zhang, F. Huang, Sci. China Chem. 2021, 64, 1192–1199.
- 7
- 7aA. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini, I. McCulloch, Adv. Mater. 2020, 32, 2001763;
- 7bJ. Song, M. Zhang, M. Yuan, Y. Qian, Y. Sun, F. Liu, Small Methods 2018, 2, 1700229.
- 8J. Huang, J. H. Carpenter, C.-Z. Li, J.-S. Yu, H. Ade, A. K. Y. Jen, Adv. Mater. 2016, 28, 967–974.
- 9X. Zhang, G. Li, S. Mukherjee, W. Huang, D. Zheng, L.-W. Feng, Y. Chen, J. Wu, V. K. Sangwan, M. C. Hersam, D. M. DeLongchamp, J. Yu, A. Facchetti, T. J. Marks, Adv. Energy Mater. 2022, 12, 2102172.
- 10R. Yu, X. Wei, G. Wu, Z. A. Tan, Aggregate 2022, 3, e107.
- 11Y. Yan, X. Liu, T. Wang, Adv. Mater. 2017, 29, 1601674.
- 12
- 12aF.-Z. Cui, Z.-H. Chen, J.-W. Qiao, T. Wang, G.-H. Lu, H. Yin, X.-T. Hao, Adv. Funct. Mater. 2022, 32, 2200478;
- 12bQ. Liang, X. Jiao, Y. Yan, Z. Xie, G. Lu, J. Liu, Y. Han, Adv. Funct. Mater. 2019, 29, 1807591;
- 12cY. Zhang, K. Liu, J. Huang, X. Xia, J. Cao, G. Zhao, P. W. K. Fong, Y. Zhu, F. Yan, Y. Yang, X. Lu, G. Li, Nat. Commun. 2021, 12, 4815;
- 12dR. Ma, Y. Tao, Y. Chen, T. Liu, Z. Luo, Y. Guo, Y. Xiao, J. Fang, G. Zhang, X. Li, X. Guo, Y. Yi, M. Zhang, X. Lu, Y. Li, H. Yan, Sci. China Chem. 2021, 64, 581–589;
- 12eQ. Li, L.-M. Wang, S. Liu, X. Zhan, T. Zhu, Z. Cao, H. Lai, J. Zhao, Y. Cai, W. Xie, F. Huang, ACS Appl. Mater. Interfaces 2019, 11, 45979–45990.
- 13
- 13aA. L. Ayzner, C. J. Tassone, S. H. Tolbert, B. J. Schwartz, J. Phys. Chem. C 2009, 113, 20050–20060;
- 13bR. Zhu, J.-M. Lin, W.-Z. Wang, Z. C. Wei, W. Huang, Y.-H. Xu, J.-B. Peng, Y. Cao, J. Phys. Chem. B 2008, 112, 1611–1618.
- 14C. Cao, H. Wang, D. Qiu, T. Zhao, Y. Zhu, X. Lai, M. Pu, Y. Li, H. Li, H. Chen, F. He, Adv. Funct. Mater. 2022, 32, 2201828.
- 15
- 15aX. Wang, L. Zhang, L. Hu, Z. Xie, H. Mao, L. Tan, Y. Zhang, Y. Chen, Adv. Funct. Mater. 2021, 31, 2102291;
- 15bJ. Wan, L. Zeng, X. Liao, Z. Chen, S. Liu, P. Zhu, H. Zhu, Y. Chen, Adv. Funct. Mater. 2022, 32, 2107567.
- 16L. Zhu, M. Zhang, W. Zhong, S. Leng, G. Zhou, Y. Zou, X. Su, H. Ding, P. Gu, F. Liu, Y. Zhang, Energy Environ. Sci. 2021, 14, 4341–4357.
- 17Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422–518.
- 18P. Jeschke, ChemBioChem 2004, 5, 570–589.
- 19Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 2009, 131, 7792–7799.
- 20J. M. W. Chan, J. Mater. Chem. C 2019, 7, 12822–12834.
- 21A. Zhang, Q. Wang, R. A. A. Bovee, C. Li, J. Zhang, Y. Zhou, Z. Wei, Y. Li, R. A. J. Janssen, Z. Wang, W. Li, J. Mater. Chem. A 2016, 4, 7736–7745.
- 22P. Homyak, Y. Liu, S. Ferdous, F. Liu, T. P. Russell, E. B. Coughlin, Chem. Mater. 2015, 27, 443–449.
- 23G. He, X. Wan, Z. Li, Q. Zhang, G. Long, Y. Liu, Y. Hou, M. Zhang, Y. Chen, J. Mater. Chem. C 2014, 2, 1337–1345.
- 24H. Lai, Q. Zhao, Z. Chen, H. Chen, P. Chao, Y. Zhu, Y. Lang, N. Zhen, D. Mo, Y. Zhang, F. He, Joule 2020, 4, 688–700.
- 25T. Zhang, H. Chen, C. Li, K. Lu, L. Zhang, A. Shokrieh, J. Zhang, G. Lu, S. Lei, Z. Wei, J. Mater. Chem. A 2022, 10, 8837–8845.
- 26F. Meyer, Prog. Polym. Sci. 2015, 47, 70–91.
- 27Y. Liu, D. Tang, K. Zhang, P. Huang, Z. Wang, K. Zhu, Z. Li, L. Yuan, J. Fan, Y. Zhou, B. Song, ACS Omega 2017, 2, 2489–2498.
- 28Z. Mao, K. Vakhshouri, C. Jaye, D. A. Fischer, R. Fernando, D. M. DeLongchamp, E. D. Gomez, G. Sauvé, Macromolecules 2013, 46, 103–112.
- 29
- 29aY. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205;
- 29bQ. Wei, T. Nishizawa, K. Tajima, K. Hashimoto, Adv. Mater. 2008, 20, 2211–2216.
- 30N. Gasparini, A. Salleo, I. McCulloch, D. Baran, Nat. Rev. Mater. 2019, 4, 229–242.
- 31L. Zhan, S. Li, X. Xia, Y. Li, X. Lu, L. Zuo, M. Shi, H. Chen, Adv. Mater. 2021, 33, 2007231.
- 32Q. Wang, Z. Hu, Z. Wu, Y. Lin, L. Zhang, L. Liu, Y. Ma, Y. Cao, J. Chen, ACS Appl. Mater. Interfaces 2020, 12, 4659–4672.
- 33W. Li, M. Chen, J. Cai, E. L. K. Spooner, H. Zhang, R. S. Gurney, D. Liu, Z. Xiao, D. G. Lidzey, L. Ding, T. Wang, Joule 2019, 3, 819–833.
- 34Z. Wu, C. Sun, S. Dong, X.-F. Jiang, S. Wu, H. Wu, H.-L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2016, 138, 2004–2013.
- 35
- 35aY. Cai, Y. Li, R. Wang, H. Wu, Z. Chen, J. Zhang, Z. Ma, X. Hao, Y. Zhao, C. Zhang, F. Huang, Y. Sun, Adv. Mater. 2021, 33, 2101733;
- 35bJ. Wang, M. Zhang, J. Lin, Z. Zheng, L. Zhu, P. Bi, H. Liang, X. Guo, J. Wu, Y. Wang, L. Yu, J. Li, J. Lv, X. Liu, F. Liu, J. Hou, Y. Li, Energy Environ. Sci. 2022, 15, 1585–1593.
- 36S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 2020, 14, 300–305.
- 37W. Deng, W. Liu, R. Qian, H. Wu, J. Phys. Chem. Lett. 2022, 13, 544–551.
- 38O. J. Sandberg, A. Sundqvist, M. Nyman, R. Österbacka, Phys. Rev. Appl. 2016, 5, 044005.
- 39A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569–4577.
- 40L. Hong, H. Yao, Y. Cui, P. Bi, T. Zhang, Y. Cheng, Y. Zu, J. Qin, R. Yu, Z. Ge, J. Hou, Adv. Mater. 2021, 33, 2103091.
- 41G. G. Malliaras, J. R. Salem, P. J. Brock, C. Scott, Phys. Rev. B. 1998, 58, R13411–R13414.
- 42Y. Cai, Q. Li, G. Lu, H. S. Ryu, Y. Li, H. Jin, Z. Chen, Z. Tang, G. Lu, X. Hao, H. Y. Woo, C. Zhang, Y. Sun, Nat. Commun. 2022, 13, 2369.