Au⋅⋅⋅H−C Interactions Support a Robust Thermally Activated Delayed Fluorescence (TADF) Gold(I) Complex for OLEDs with Little Efficiency Roll-Off and Good Stability
Xingyu Feng
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Investigation (equal)
Search for more papers by this authorDr. Jian-Gong Yang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Investigation (equal)
Search for more papers by this authorDr. Jingsheng Miao
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Cheng Zhong
Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorDr. Xiaojun Yin
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Nengquan Li
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorChao Wu
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorQizheng Zhang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorProf. Dr. Yong Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Kai Li
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Conceptualization (lead), Methodology (lead), Project administration (equal), Supervision (equal), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Dr. Chuluo Yang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Conceptualization (supporting), Project administration (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorXingyu Feng
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Investigation (equal)
Search for more papers by this authorDr. Jian-Gong Yang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (supporting), Investigation (equal)
Search for more papers by this authorDr. Jingsheng Miao
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Cheng Zhong
Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorDr. Xiaojun Yin
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Nengquan Li
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorChao Wu
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorQizheng Zhang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Investigation (supporting)
Search for more papers by this authorProf. Dr. Yong Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Kai Li
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Conceptualization (lead), Methodology (lead), Project administration (equal), Supervision (equal), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Dr. Chuluo Yang
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055 P. R. China
Contribution: Conceptualization (supporting), Project administration (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorGraphical Abstract
Robust mononuclear AuI emitters are prepared by harnessing intramolecular Au⋅⋅⋅H−C interactions. The new emitter displays appealing thermally activated delayed fluorescence (TADF) as well as thermal and photo-stability, leading to high-performance organic light-emitting diodes with negligible efficiency roll-off and good operational stability. This work shows the potential of secondary interactions for developing optoelectronic materials.
Abstract
The practical use of luminescent mononuclear gold(I) complexes as optoelectronic materials has been limited by their inferior stability. Herein we demonstrate a strategy to improve the stability of gold(I) complexes which display thermally activated delayed fluorescence (TADF). A highly rigid and groove-like σ-donating aryl ligand has been used to form dual Au⋅⋅⋅H−C hydrogen bonds. The secondary metal-ligand interactions have been authenticated by single-crystal structure, NMR spectroscopy and theoretical simulations. The TADF AuI complex exhibits appealing emission properties (photoluminescence quantum yield=76 %; delayed fluorescence lifetime=1.2 μs) and much improved thermal and photo-stability. Vacuum-deposited organic light-emitting diodes (OLEDs) show promising electroluminescence with a maximum external quantum efficiency (EQE) over 23 % and negligible efficiency roll-off even at 10 000 cd m−2. An estimated LT50 longer than 77 000 h with initial luminance of 100 cd m−2 reveals good operational stability. This work suggests a way for design of stable luminescent gold(I) complexes.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202209451-sup-0001-misc_information.pdf5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. A. C. A. Bayrakdar, T. Scattolin, X. Ma, S. P. Nolan, Chem. Soc. Rev. 2020, 49, 7044–7100;
- 1bE. E. Langdon-Jones, S. J. A. Pope, Chem. Commun. 2014, 50, 10343–10354.
- 2
- 2aR. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093–2126;
- 2bS. Witzel, A. S. K. Hashmi, J. Xie, Chem. Rev. 2021, 121, 8868–8925.
- 3
- 3aK. Li, G. S. M. Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653–1673;
- 3bT. Fleetham, G. Li, J. Li, Adv. Mater. 2016, 28, 1601861;
- 3cP. K. Chow, C. Ma, W.-P. To, G. S. M. Tong, S.-L. Lai, S. C. F. Kui, W.-M. Kwok, C.-M. Che, Angew. Chem. Int. Ed. 2013, 52, 11775–11779; Angew. Chem. 2013, 125, 11991–11995;
- 3dD. Zhou, W.-P. To, G. S. M. Tong, G. Cheng, L. Du, D. L. Phillips, C.-M. Che, Angew. Chem. Int. Ed. 2020, 59, 6375–6382; Angew. Chem. 2020, 132, 6437–6444;
- 3eL.-K. Li, M.-C. Tang, S.-L. Lai, M. Ng, W.-K. Kwok, M.-Y. Chan, V. W.-W. Yam, Nat. Photonics 2019, 13, 185–191.
- 4
- 4aZ. N. Wu, Y. H. Du, J. Liu, Q. F. Yao, T. K. Chen, Y. T. Cao, H. Zhang, J. P. Xie, Angew. Chem. Int. Ed. 2019, 58, 8139–8144; Angew. Chem. 2019, 131, 8223–8228;
- 4bA. L. Balch, Angew. Chem. Int. Ed. 2009, 48, 2641–2644; Angew. Chem. 2009, 121, 2679–2682;
- 4cP. Pyykkö, Chem. Rev. 1997, 97, 597–636.
- 5D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. Abdi Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159–163.
- 6T.-Y. Li, D. S. Muthiah Ravinson, R. Haiges, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2020, 142, 6158–6172.
- 7R. P. Herrera, M. C. Gimeno, Chem. Rev. 2021, 121, 8311–8363.
- 8
- 8aA. S. Romanov, S. T. E. Jones, Q. Gu, P. J. Conaghan, B. H. Drummond, J. Feng, F. Chotard, L. Buizza, M. Foley, M. Linnolahti, D. Credgington, M. Bochmann, Chem. Sci. 2020, 11, 435–446;
- 8bP. J. Conaghan, S. M. Menke, A. S. Romanov, S. T. E. Jones, A. J. Pearson, E. W. Evans, M. Bochmann, N. C. Greenham, D. Credgington, Adv. Mater. 2018, 30, 1802285;
- 8cA. S. Romanov, L. Yang, S. T. E. Jones, D. Di, O. J. Morley, B. H. Drummond, A. P. M. Reponen, M. Linnolahti, D. Credgington, M. Bochmann, Chem. Mater. 2019, 31, 3613–3623;
- 8dF. Chotard, V. Sivchik, M. Linnolahti, M. Bochmann, A. S. Romanov, Chem. Mater. 2020, 32, 6114–6122;
- 8eP. J. Conaghan, C. S. B. Matthews, F. Chotard, S. T. E. Jones, N. C. Greenham, M. Bochmann, D. Credgington, A. S. Romanov, Nat. Commun. 2020, 11, 1758;
- 8fJ.-G. Yang, X.-F. Song, J. Wang, K. Li, X. Chang, L.-Y. Tan, C.-X. Liu, F.-H. Yu, G. Cui, G. Cheng, W.-P. To, C. Yang, C.-M. Che, Y. Chen, Chem. Eur. J. 2021, 27, 17834–17842;
- 8gJ.-G. Yang, X.-F. Song, G. Cheng, S. Wu, X. Feng, G. Cui, W.-P. To, X. Chang, Y. Chen, C.-M. Che, C. Yang, K. Li, ACS Appl. Mater. Interfaces 2022, 14, 13539–13549.
- 9
- 9aR. Molteni, K. Edkins, M. Haehnel, A. Steffen, Organometallics 2016, 35, 629–640;
- 9bD. V. Partyka, A. J. Esswein, M. Zeller, A. D. Hunter, T. G. Gray, Organometallics 2007, 26, 3279–3282;
- 9cJ. J. Mihaly, D. J. Stewart, T. A. Grusenmeyer, A. T. Phillips, J. E. Haley, M. Zeller, T. G. Gray, Dalton Trans. 2019, 48, 15917–15927;
- 9dJ. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, Dalton Trans. 2017, 46, 2046–2067;
- 9eT.-Y. Li, P. I. Djurovich, M. E. Thompson, Inorg. Chim. Acta 2021, 517, 120188;
- 9fJ. J. Mihaly, S. M. Wolf, A. T. Phillips, S. Mam, Z. Yung, J. E. Haley, M. Zeller, K. de La Harpe, E. Holt, T. A. Grusenmeyer, S. Collins, T. G. Gray, Inorg. Chem. 2022, 61, 1228–1235.
- 10
- 10aG. Park, F. P. Gabbaï, J. Am. Chem. Soc. 2021, 143, 12494–12498;
- 10bJ. Vícha, C. Foroutan-Nejad, M. Straka, Nat. Commun. 2019, 10, 1643;
- 10cM. A. Bakar, M. Sugiuchi, M. Iwasaki, Y. Shichibu, K. Konishi, Nat. Commun. 2017, 8, 576;
- 10dM. Rigoulet, S. Massou, E. D. S. Carrizo, S. Mallet-Ladeira, A. Amgoune, K. Miqueu, D. Bourissou, Proc. Natl. Acad. Sci. USA 2019, 116, 46–51;
- 10eM. Straka, E. Andris, J. Vícha, A. Růžička, J. Roithová, L. Rulíšek, Angew. Chem. Int. Ed. 2019, 58, 2011–2016; Angew. Chem. 2019, 131, 2033–2038;
- 10fH. Schmidbaur, Angew. Chem. Int. Ed. 2019, 58, 5806–5809; Angew. Chem. 2019, 131, 5862–5866;
- 10gH. Schmidbaur, H. G. Raubenheimer, L. Dobrzańska, Chem. Soc. Rev. 2014, 43, 345–380.
- 11H. Darmandeh, J. Löffler, N. V. Tzouras, B. Dereli, T. Scherpf, K.-S. Feichtner, S. Vanden Broeck, K. Van Hecke, M. Saab, C. S. J. Cazin, L. Cavallo, S. P. Nolan, V. H. Gessner, Angew. Chem. Int. Ed. 2021, 60, 21014–21024; Angew. Chem. 2021, 133, 21182–21192.
- 12H. L. Lee, W. J. Chung, J. Y. Lee, Small 2020, 16, 1907569.
- 13Deposition Numbers 2169591 (for IPzIDCz) and 2178792 (for IPzTPA) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 14
- 14aM. A. Narayana, M. Vaddamanu, A. Sathyanarayana, K. Siddhant, S. Sugiyama, K. Ozaki, A. K. Rengan, K. Velappan, K. Hisano, O. Tsutsumi, G. Prabusankar, Dalton Trans. 2021, 50, 16514–16518;
- 14bS. K. Verma, S. N. Ansari, P. Kumari, S. M. Mobin, Organometallics 2019, 38, 2591–2596;
- 14cM. Vaddamanu, A. Sathyanarayana, Y. Masaya, S. Sugiyama, O. Kazuhisa, K. Velappan, K. Subramaniyam, K. Hisano, O. Tsutsumi, G. Prabusankar, Organometallics 2020, 39, 2202–2206;
- 14dA. Sathyanarayana, K. Siddhant, M. Yamane, K. Hisano, G. Prabusankar, O. Tsutsumi, J. Mater. Chem. C 2022, 10, 6050–6060;
- 14eM. Teci, E. Brenner, D. Matt, C. Gourlaouen, L. Toupet, Chem. Eur. J. 2015, 21, 10997–11000;
- 14fL.-A. Schaper, X. Wei, S. J. Hock, A. Pöthig, K. Öfele, M. Cokoja, W. A. Herrmann, F. E. Kühn, Organometallics 2013, 32, 3376–3384.
- 15W. Scherer, A. C. Dunbar, J. E. Barquera-Lozada, D. Schmitz, G. Eickerling, D. Kratzert, D. Stalke, A. Lanza, P. Macchi, N. P. M. Casati, J. Ebad-Allah, C. Kuntscher, Angew. Chem. Int. Ed. 2015, 54, 2505–2509; Angew. Chem. 2015, 127, 2535–2539.
- 16L. Schmid, F. Glaser, R. Schaer, O. S. Wenger, J. Am. Chem. Soc. 2022, 144, 963–976.