Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation-Resistant Cyclodextrin-Based Metal–Organic Frameworks**
Mary E. Zick
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 USA
Search for more papers by this authorDr. Suzi M. Pugh
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
Search for more papers by this authorDr. Jung-Hoon Lee
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorDr. Alexander C. Forse
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
Search for more papers by this authorCorresponding Author
Dr. Phillip J. Milner
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 USA
Search for more papers by this authorMary E. Zick
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 USA
Search for more papers by this authorDr. Suzi M. Pugh
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
Search for more papers by this authorDr. Jung-Hoon Lee
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorDr. Alexander C. Forse
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW UK
Search for more papers by this authorCorresponding Author
Dr. Phillip J. Milner
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2022-f1xz2).
Graphical Abstract
Carbon capture and sequestration is needed to fight global climate change, but current technologies are largely limited to sorbents based on oxidatively sensitive amines. Hydroxides encapsulated within cyclodextrin-based metal–organic frameworks are demonstrated to capture CO2 via reversible bicarbonate formation, leading to a promising oxidatively stable class of materials for CO2 capture from industrial point sources.
Abstract
Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine-based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in γ-cylodextrin-based metal–organic frameworks (CD-MOFs) occurs via HCO3− formation at nucleophilic OH− sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD-MOF possesses rapid and high-capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD-MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH− sites within a porous framework represents a potentially general strategy for the design of oxidation-resistant adsorbents for CO2 capture.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, Ö. Yelekçi, R. Yu, B. Zhou, Eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2021.
- 2 CO2 Emissions from Fuel Combustion: Overview, International Energy Agency, Paris, 2017.
- 3S. Chu, Science 2009, 325, 1599–1599.
- 4R. L. Siegelman, E. J. Kim, J. R. Long, Nat. Mater. 2021, 20, 1060–1072.
- 5R. L. Siegelman, P. J. Milner, E. J. Kim, S. C. Weston, J. R. Long, Energy Environ. Sci. 2019, 12, 2161–2173.
- 6M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Energy Environ. Sci. 2018, 11, 1062–1176.
- 7D. J. Barker, S. A. Turner, P. A. Napier-Moore, M. Clark, J. E. Davison, Energy Procedia 2009, 1, 87–94.
- 8E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Chem. Rev. 2016, 116, 11840–11876.
- 9N. McQueen, K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta, J. Wilcox, Prog. Energy 2021, 3, 032001.
- 10“Direct Air Capture—Analysis,” can be found under https://www.iea.org/reports/direct-air-capture, n.d.
- 11Gary T. Rochelle, Science 2009, 325, 1652–1654.
- 12F. Vega, A. Sanna, B. Navarrete, M. M. Maroto-Valer, V. J. Cortés, Greenhouse Gas Sci. Technol. 2014, 4, 707–733.
- 13S. B. Fredriksen, K.-J. Jens, Energy Procedia 2013, 37, 1770–1777.
- 14C. Gouedard, D. Picq, F. Launay, P.-L. Carrette, Int. J. Greenhouse Gas Control 2012, 10, 244–270.
- 15S. Chi, G. T. Rochelle, Ind. Eng. Chem. Res. 2002, 41, 4178–4186.
- 16D. J. Heldebrant, P. K. Koech, V.-A. Glezakou, R. Rousseau, D. Malhotra, D. C. Cantu, Chem. Rev. 2017, 117, 9594–9624.
- 17B. Dutcher, M. Fan, A. G. Russell, ACS Appl. Mater. Interfaces 2015, 7, 2137–2148.
- 18C. Kim, H. S. Cho, S. Chang, S. J. Cho, M. Choi, Energy Environ. Sci. 2016, 9, 1803–1811.
- 19P. Bollini, S. A. Didas, C. W. Jones, J. Mater. Chem. 2011, 21, 15100.
- 20M. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828.
- 21C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, O. M. Yaghi, Nat. Rev. Mater. 2017, 2, 17045.
- 22Y. Lin, C. Kong, L. Chen, RSC Adv. 2016, 6, 32598–32614.
- 23C.-J. Yoo, S. J. Park, C. W. Jones, Ind. Eng. Chem. Res. 2020, 59, 7061–7071.
- 24S. A. Mazari, B. Si Ali, B. M. Jan, I. M. Saeed, S. Nizamuddin, Int. J. Greenhouse Gas Control 2015, 34, 129–140.
- 25A. Ahmadalinezhad, A. Sayari, Phys. Chem. Chem. Phys. 2014, 16, 1529–1535.
- 26S. Bali, T. T. Chen, W. Chaikittisilp, C. W. Jones, Energy Fuels 2013, 27, 1547–1554.
- 27C. S. Srikanth, S. S. C. Chuang, ChemSusChem 2012, 5, 1435–1442.
- 28A. Heydari-Gorji, A. Sayari, Ind. Eng. Chem. Res. 2012, 51, 6887–6894.
- 29P. Bollini, S. Choi, J. Drese, C. W. Jones, Energy Fuels 2011, 10, 2416–2425.
- 30A. Heydari-Gorji, Y. Belmabkhout, A. Sayari, Microporous Mesoporous Mater. 2011, 145, 146–149.
- 31Y. Liu, H.-Z. Ye, K. M. Diederichsen, T. Van Voorhis, T. A. Hatton, Nat. Commun. 2020, 11, 2278.
- 32A. C. Forse, P. J. Milner, Chem. Sci. 2021, 12, 508–516.
- 33Y. Duan, D. C. Sorescu, J. Chem. Phys. 2010, 133, 074508.
- 34M. Mahmoudkhani, D. W. Keith, Int. J. Greenhouse Gas Control 2009, 3, 376–384.
- 35M. Samari, F. Ridha, V. Manovic, A. Macchi, E. J. Anthony, Mitig. Adapt Strateg. Glob. Change 2020, 25, 25–41.
- 36D. T. Beruto, R. Botter, J. Eur. Ceram. Soc. 2000, 20, 497–503.
- 37A. L.-T. Pham, D. L. Sedlak, F. M. Doyle, Appl. Catal. B 2012, 126, 258–264.
- 38Z. Wang, A. Bilegsaikhan, R. T. Jerozal, T. A. Pitt, P. J. Milner, ACS Appl. Mater. Interfaces 2021, 13, 17517–17531.
- 39S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Adv. Mater. 2018, 30, 1704303.
- 40C. E. Bien, Q. Liu, C. R. Wade, Chem. Mater. 2020, 32, 489–497.
- 41Z. Cai, C. E. Bien, Q. Liu, C. R. Wade, Chem. Mater. 2020, 32, 4257–4264.
- 42C. E. Bien, K. K. Chen, S.-C. Chien, B. R. Reiner, L.-C. Lin, C. R. Wade, W. S. W. Ho, J. Am. Chem. Soc. 2018, 140, 12662–12666.
- 43A. M. Wright, Z. Wu, G. Zhang, J. L. Mancuso, R. J. Comito, R. W. Day, C. H. Hendon, J. T. Miller, M. Dincă, Chem 2018, 4, 2894–2901.
- 44P.-Q. Liao, H. Chen, D.-D. Zhou, S.-Y. Liu, C.-T. He, Z. Rui, H. Ji, J.-P. Zhang, X.-M. Chen, Energy Environ. Sci. 2015, 8, 1011–1016.
- 45T. Wang, K. S. Lackner, A. Wright, Environ. Sci. Technol. 2011, 45, 6670–6675.
- 46L. Xu, C.-Y. Xing, D. Ke, L. Chen, Z.-J. Qiu, S.-L. Zeng, B.-J. Li, S. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 3032–3041.
- 47Y. He, X. Hou, Y. Liu, N. Feng, J. Mater. Chem. B 2019, 7, 5602–5619.
- 48L. Li, J. Wang, Z. Zhang, Q. Yang, Y. Yang, B. Su, Z. Bao, Q. Ren, ACS Appl. Mater. Interfaces 2019, 11, 2543–2550.
- 49H. A. Patel, T. Islamoglu, Z. Liu, S. K. M. Nalluri, A. Samanta, O. Anamimoghadam, C. D. Malliakas, O. K. Farha, J. F. Stoddart, J. Am. Chem. Soc. 2017, 139, 11020–11023.
- 50T. K. Yan, A. Nagai, W. Michida, K. Kusakabe, S. Binti Yusup, Procedia Eng. 2016, 148, 30–34.
- 51J. J. Gassensmith, J. Y. Kim, J. M. Holcroft, O. K. Farha, J. F. Stoddart, J. T. Hupp, N. C. Jeong, J. Am. Chem. Soc. 2014, 136, 8277–8282.
- 52D. Wu, J. J. Gassensmith, D. Gouvêa, S. Ushakov, J. F. Stoddart, A. Navrotsky, J. Am. Chem. Soc. 2013, 135, 6790–6793.
- 53J. J. Gassensmith, H. Furukawa, R. A. Smaldone, R. S. Forgan, Y. Y. Botros, O. M. Yaghi, J. F. Stoddart, J. Am. Chem. Soc. 2011, 133, 15312–15315.
- 54R. A. Smaldone, R. S. Forgan, H. Furukawa, J. J. Gassensmith, A. M. Z. Slawin, O. M. Yaghi, J. F. Stoddart, Angew. Chem. Int. Ed. 2010, 49, 8630–8634; Angew. Chem. 2010, 122, 8812–8816.
- 55H. D. M. Pham, R. Z. Khaliullin, J. Phys. Chem. C 2021, 125, 24719–24727.
- 56C. Wang, H. Luo, D. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2010, 49, 5978–5981; Angew. Chem. 2010, 122, 6114–6117.
- 57T. C. Drage, A. Arenillas, K. M. Smith, C. E. Snape, Microporous Mesoporous Mater. 2008, 116, 504–512.
- 58R. S. Forgan, R. A. Smaldone, J. J. Gassensmith, H. Furukawa, D. B. Cordes, Q. Li, C. E. Wilmer, Y. Y. Botros, R. Q. Snurr, A. M. Z. Slawin, J. F. Stoddart, J. Am. Chem. Soc. 2012, 134, 406–417.
- 59E. J. Granite, H. W. Pennline, Ind. Eng. Chem. Res. 2002, 41, 5470–5476.
- 60P. J. Milner, R. L. Siegelman, A. C. Forse, M. I. Gonzalez, T. Runčevski, J. D. Martell, J. A. Reimer, J. R. Long, J. Am. Chem. Soc. 2017, 139, 13541–13553.
- 61R. R. Krug, W. G. Hunter, R. A. Grieger, Nature 1976, 261, 566–567.
- 62P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Molecules 2018, 23, 1161.
- 63A. Looney, R. Han, K. McNeill, G. Parkin, J. Am. Chem. Soc. 1993, 115, 4690–4697.
- 64C.-H. Chen, D. Shimon, J. J. Lee, F. Mentink-Vigier, I. Hung, C. Sievers, C. W. Jones, S. E. Hayes, J. Am. Chem. Soc. 2018, 140, 8648–8651.
- 65W. Sattler, G. Parkin, Chem. Sci. 2012, 3, 2015.
- 66P. V. Kortunov, M. Siskin, L. S. Baugh, D. C. Calabro, Energy Fuels 2015, 29, 5919–5939.
- 67F. Mani, M. Peruzzini, P. Stoppioni, Green Chem. 2006, 8, 995.
- 68S. Kohata, K. Jyodoi, A. Ohyoshi, Thermochim. Acta 1993, 217, 187–198.
- 69A. C. Forse, P. J. Milner, J.-H. Lee, H. N. Redfearn, J. Oktawiec, R. L. Siegelman, J. D. Martell, B. Dinakar, L. B. Porter-Zasada, M. I. Gonzalez, J. B. Neaton, J. R. Long, J. A. Reimer, J. Am. Chem. Soc. 2018, 140, 18016–18031.
- 70P.-Q. Liao, X.-W. Chen, S.-Y. Liu, X.-Y. Li, Y.-T. Xu, M. Tang, Z. Rui, H. Ji, J.-P. Zhang, X.-M. Chen, Chem. Sci. 2016, 7, 6528–6533.
- 71J. D. Martell, P. J. Milner, R. L. Siegelman, J. R. Long, Chem. Sci. 2020, 11, 6457–6471.
- 72A. D. Ebner, M. L. Gray, N. G. Chisholm, Q. T. Black, D. D. Mumford, M. A. Nicholson, J. A. Ritter, Ind. Eng. Chem. Res. 2011, 50, 5634–5641.