Bioinspired Metalation of the Metal-Organic Framework MIL-125-NH2 for Photocatalytic NADH Regeneration and Gas-Liquid-Solid Three-Phase Enzymatic CO2 Reduction
Gang Lin
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorYuanyuan Zhang
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 P. R. China
Search for more papers by this authorYutao Hua
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorChunhui Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorDr. Changchao Jia
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Dianxing Ju
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorDr. Cunming Yu
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Peng Li
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 P. R. China
Search for more papers by this authorGang Lin
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorYuanyuan Zhang
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 P. R. China
Search for more papers by this authorYutao Hua
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorChunhui Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorDr. Changchao Jia
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Dianxing Ju
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Search for more papers by this authorDr. Cunming Yu
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Peng Li
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jian Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 P. R. China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101 P. R. China
Search for more papers by this authorGraphical Abstract
Bioinspired metalation of the MOF MIL-125-NH2 was accomplished by incorporating the electron-transfer unit of a Rh complex for facilitated photocatalytic NADH regeneration. By immobilizing formate dehydrogenase onto the hydrophobic layer of the membrane, a gas-liquid-solid three-phase interface around the enzyme site could be formed for sustained and enhanced formic acid production coupled with in situ generated NADH.
Abstract
Coenzyme NADH regeneration is crucial for sustained photoenzymatic catalysis of CO2 reduction. However, light-driven NADH regeneration still suffers from the low regeneration efficiency and requires the use of a homogeneous Rh complex. Herein, a Rh complex-based electron transfer unit was chemically attached onto the linker of the MIL-125-NH2. The coupling between the light-harvesting iminopyridine unit and electron-transferring Rh-complex facilitated the photo-induced electron transfer for the NADH regeneration with the yield of 66.4 % in 60 mins for 5 cycles. The formate dehydrogenase was further deposited onto the hydrophobic layer of the membrane by a reverse filtering technique, which forms the gas-liquid-solid reaction interface around the enzyme site. It gave an enhanced formic acid yield of 9.5 mM in 24 hours coupled with the in situ regenerated NADH. The work could shed light on the construction of integrated inorganic-enzyme hybrid systems for artificial photosynthesis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202206283-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.
- 2B. Schulze, M. G. Wubbolts, Curr. Opin. Biotechnol. 1999, 10, 609–615.
- 3A. Alitalo, M. Niskanen, E. Aura, Bioresour. Technol. 2015, 196, 600–605.
- 4C. R. Schneider, H. S. Shafaat, Chem. Commun. 2016, 52, 9889–9892.
- 5P. S. Nabavi Zadeh, M. Zezzi do Valle Gomes, B. Åkerman, A. E. C. Palmqvist, ACS Catal. 2018, 8, 7251–7260.
- 6G. Liu, F. Gao, C. Gao, Y. Xiong, ChemCatChem 2021, 13, 1367–1377.
- 7V. I. Tishkov, V. O. Popov, Biochemistry 2004, 69, 1252–1267.
- 8L. Calzadiaz-Ramirez, A. S. Meyer, Curr. Opin. Biotechnol. 2022, 73, 95–100.
- 9I. Tsujisho, M. Toyoda, Y. Amao, Catal. Commun. 2006, 7, 173–176.
- 10M. Poizat, I. W. C. E. Arends, F. Hollmann, J. Mol. Catal. B 2010, 63, 149–156.
- 11S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed. 2018, 57, 7958–7985; Angew. Chem. 2018, 130, 8086–8116.
- 12J. S. Rowbotham, H. A. Reeve, K. A. Vincent, ACS Catal. 2021, 11, 2596–2604.
- 13R. K. Singh, R. Singh, D. Sivakumar, S. Kondaveeti, T. Kim, J. Li, B. H. Sung, B.-K. Cho, D. R. Kim, S. C. Kim, V. C. Kalia, Y.-H. P. J. Zhang, H. Zhao, Y. C. Kang, J.-K. Lee, ACS Catal. 2018, 8, 11085–11093.
- 14Y. Z. Wu, J. F. Shi, D. L. Li, S. H. Zhang, B. Gu, Q. Qiu, Y. Y. Sun, Y. S. Zhang, Z. Y. Cai, Z. Y. Jiang, ACS Catal. 2020, 10, 2894–2905.
- 15P. Ling, Q. Zhang, T. Cao, F. Gao, Angew. Chem. Int. Ed. 2018, 57, 6819–6824; Angew. Chem. 2018, 130, 6935–6940.
- 16Y. Sun, J. Shi, Z. Wang, H. Wang, S. Zhang, Y. Wu, H. Wang, S. Li, Z. Jiang, J. Am. Chem. Soc. 2022, 144, 4168–4177.
- 17Z. Zhao, D. Zheng, M. Guo, J. Yu, S. Zhang, Z. Zhang, Y. Chen, Angew. Chem. Int. Ed. 2022, 61, e202200261; Angew. Chem. 2022, 134, e202200261.
- 18S. Zhang, S. Liu, Y. Sun, S. Li, J. Shi, Z. Jiang, Chem. Soc. Rev. 2021, 50, 13449–13466.
- 19J. Liu, M. Antonietti, Energy Environ. Sci. 2013, 6, 1486–1493.
- 20R. K. Yadav, J.-O. Baeg, G. H. Oh, N.-J. Park, K.-j. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455–11461.
- 21D. Ju, G. Lin, H. Xiao, Y. Zhang, S. Su, J. Liu, Sol. RRL 2020, 4, 2000559.
- 22F. Lan, Q. Wang, H. Chen, Y. Chen, Y. Zhang, B. Huang, H. Liu, J. Liu, R. Li, ACS Catal. 2020, 10, 12976–12986.
- 23W. Liu, W. Hu, L. Yang, J. Liu, Nano Energy 2020, 73, 104750.
- 24Y. Zhang, Y. Zhao, R. Li, J. Liu, Sol. RRL 2020, 5, 200339.
- 25S. H. Zhang, Y. S. Zhang, Y. Chen, D. Yang, S. H. Li, Y. Z. Wu, Y. Y. Sun, Y. Q. Cheng, J. F. Shi, Z. Y. Jiang, ACS Catal. 2021, 11, 476–483.
- 26T. Himiyama, M. Waki, Y. Maegawa, S. Inagaki, Angew. Chem. Int. Ed. 2019, 58, 9150–9154; Angew. Chem. 2019, 131, 9248–9252.
- 27Y. Tian, Y. Zhou, Y. Zong, J. Li, N. Yang, M. Zhang, Z. Guo, H. Song, ACS Appl. Mater. Interfaces 2020, 12, 34795–34805.
- 28L. Zhang, N. Vila, G. W. Kohring, A. Walcarius, M. Etienne, ACS Catal. 2017, 7, 4386–4394.
- 29Y. Chen, P. Li, J. Zhou, C. T. Buru, L. Đorđević, P. Li, X. Zhang, M. M. Cetin, J. F. Stoddart, S. I. Stupp, M. R. Wasielewski, O. K. Farha, J. Am. Chem. Soc. 2020, 142, 1768–1773.
- 30W. Xu, B. Tu, Q. Liu, Y. Shu, C.-C. Liang, C. S. Diercks, O. M. Yaghi, Y.-B. Zhang, H. Deng, Q. Li, Nat. Rev. Mater. 2020, 5, 764–779.
- 31W.-H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq, I. Willner, Nat. Catal. 2018, 1, 689–695.
- 32K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan, P. Falcaro, Nat. Commun. 2015, 6, 7240.
- 33K. Liang, C. J. Coghlan, S. G. Bell, C. Doonan, P. Falcaro, Chem. Commun. 2016, 52, 473–476.
- 34F. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano Lett. 2014, 14, 5761–5765.
- 35P. Li, S. Y. Moon, M. A. Guelta, S. P. Harvey, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2016, 138, 8052–8055.
- 36P. Li, Q. Chen, T. C. Wang, N. A. Vermeulen, B. L. Mehdi, A. Dohnalkova, N. D. Browning, D. Shen, R. Anderson, D. A. Gómez-Gualdrón, F. M. Cetin, J. Jagiello, A. M. Asiri, J. F. Stoddart, O. K. Farha, Chem 2018, 4, 1022–1034.
- 37H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O′Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023.
- 38J. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S. C. Fakra, Y. S. Liu, R. Matheu, S. A. Alshmimri, S. Alshehri, C. A. Trickett, G. A. Somorjai, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 18208–18216.
- 39Y. Wang, Q. Liu, Q. Zhang, B. Peng, H. Deng, Angew. Chem. Int. Ed. 2018, 57, 7120–7125; Angew. Chem. 2018, 130, 7238–7243.
- 40W. Yan, S. Li, T. Yang, Y. Xia, X. Zhang, C. Wang, Z. Yan, F. Deng, Q. Zhou, H. Deng, J. Am. Chem. Soc. 2020, 142, 16182–16187.
- 41Y. Chen, P. Li, H. Noh, C. W. Kung, C. T. Buru, X. Wang, X. Zhang, O. K. Farha, Angew. Chem. Int. Ed. 2019, 58, 7682–7686; Angew. Chem. 2019, 131, 7764–7768.
- 42J. R. Bour, A. M. Wright, X. He, M. Dinca, Chem. Sci. 2020, 11, 1728–1737.
- 43D. J. Xiao, J. Oktawiec, P. J. Milner, J. R. Long, J. Am. Chem. Soc. 2016, 138, 14371–14379.
- 44C. J. Doonan, W. Morris, H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 9492–9493.
- 45X. Ma, L. Wang, Q. Zhang, H. L. Jiang, Angew. Chem. Int. Ed. 2019, 58, 12175–12179; Angew. Chem. 2019, 131, 12303–12307.
- 46H. Wu, X. Y. Kong, X. Wen, S. P. Chai, E. C. Lovell, J. Tang, Y. H. Ng, Angew. Chem. Int. Ed. 2021, 60, 8455–8459; Angew. Chem. 2021, 133, 8536–8540.
- 47X. Chen, S. Xiao, H. Wang, W. Wang, Y. Cai, G. Li, M. Qiao, J. Zhu, H. Li, D. Zhang, Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 17182–17186; Angew. Chem. 2020, 132, 17335–17339.
- 48Y. H. Fu, D. R. Sun, Y. J. Chen, R. K. Huang, Z. X. Ding, X. Z. Fu, Z. H. Li, Angew. Chem. Int. Ed. 2012, 51, 3364–3367; Angew. Chem. 2012, 124, 3420–3423.
- 49M. B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave, C. Sanchez, L. Rozes, C. Mellot-Draznieks, J. Am. Chem. Soc. 2017, 139, 8222–8228.
- 50S. Kampouri, T. N. Nguyen, M. Spodaryk, R. G. Palgrave, A. Züttel, B. Smit, K. C. Stylianou, Adv. Funct. Mater. 2018, 28, 1806368.
- 51A. Han, J. Sun, H. Zhang, G. K. Chuah, S. Jaenicke, ChemCatChem 2019, 11, 6425–6430.
- 52X. P. Wu, L. Gagliardi, D. G. Truhlar, J. Chem. Phys. 2019, 150, 041701.
- 53T. Zhang, H. Han, H. Wu, J. Mol. Model. 2020, 26, 34.
- 54L. Garzón-Tovar, S. Rodríguez-Hermida, I. Imaz, D. Maspoch, J. Am. Chem. Soc. 2017, 139, 897–903.
- 55Z. Zhang, J. Tong, X. Meng, Y. Cai, S. Ma, F. Huo, J. Luo, B.-H. Xu, S. Zhang, M. Pinelo, ACS Sustainable Chem. Eng. 2021, 9, 11503–11511.
- 56Z. Zhang, J. Muschiol, Y. Huang, S. B. Sigurdardóttir, N. von Solms, A. E. Daugaard, J. Wei, J. Luo, B.-H. Xu, S. Zhang, M. Pinelo, Green Chem. 2018, 20, 4339–4348.
- 57M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2017, 2, 17036.
- 58A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 2019, 58, 14549–14555; Angew. Chem. 2019, 131, 14691–14697.
- 59Y. Wu, J. Feng, H. Gao, X. Feng, L. Jiang, Adv. Mater. 2019, 31, 1800718.
- 60C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Férey, P. L. Llewellyn, M. Latroche, Dalton Trans. 2011, 40, 4879–4881.
- 61M. de Miguel, F. Ragon, T. Devic, C. Serre, P. Horcajada, H. García, ChemPhysChem 2012, 13, 3651–3654.
- 62M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Ferey, J. Am. Chem. Soc. 2009, 131, 10857–10859.
- 63H. K. Song, S. H. Lee, K. Won, J. H. Park, J. K. Kim, H. Lee, S. J. Moon, D. K. Kim, C. B. Park, Angew. Chem. Int. Ed. 2008, 47, 1749–1752; Angew. Chem. 2008, 120, 1773–1776.
- 64J. H. Kim, M. Lee, J. S. Lee, C. B. Park, Angew. Chem. Int. Ed. 2012, 51, 517–520; Angew. Chem. 2012, 124, 532–535.
- 65Y. Wang, H. Liu, Q. Pan, C. Wu, W. Hao, J. Xu, R. Chen, J. Liu, Z. Li, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 5958–5963.
- 66Y. Zhao, H. Liu, C. Wu, Z. Zhang, Q. Pan, F. Hu, R. Wang, P. Li, X. Huang, Z. Li, Angew. Chem. Int. Ed. 2019, 58, 5376–5381; Angew. Chem. 2019, 131, 5430–5435.
- 67D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Nat. Mater. 2019, 18, 1222–1227.
- 68S. Khan, J. Hwang, Y. Horn, K. K. Varanasi, Cell Rep. Phys. Sci. 2021, 2, 100318.
- 69H. Huang, R. Shi, Z. Li, J. Zhao, C. Su, T. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200802; Angew. Chem. 2022, 134, e202200802.
- 70X. Shan, J. Liu, H. Mu, Y. Xiao, B. Mei, W. Liu, G. Lin, Z. Jiang, L. Wen, L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 1659–1665; Angew. Chem. 2020, 132, 1676–1682.
- 71M. Zhang, T. Zhao, C. Yu, Q. Liu, G. Wang, H. Yang, M. Yang, L. Jiang, M. Liu, Nano Res. 2022, 15, 557–563.