Reversible Multilevel Stimuli-Responsiveness and Multicolor Room-Temperature Phosphorescence Emission Based on a Single-Component System
Jinming Song
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorLiangwei Ma
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorSiyu Sun
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Xiang Ma
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorJinming Song
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorLiangwei Ma
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorSiyu Sun
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Xiang Ma
Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
A single-component organic small molecule with a high phosphorescence quantum yield (68.4 %) and multilevel stimuli-responsiveness (mechanical and thermal stimuli-responsiveness) has been synthesized. The multilevel stimuli-responsiveness is based on a phase transition of the N-BOX from a crystalline state to an amorphous state. The phase transition regulates the reversible change of N-BOX between high-efficiency blue and yellow room-temperature phosphorescence.
Abstract
There are limited reports about the transformation of pure organic room-temperature phosphorescence (RTP) materials with multilevel stimuli-responsiveness at different RTP emission wavelengths under external stimuli. It is difficult to ensure efficient intersystem crossing (ISC) in different states of a single-component system. This research reports the conversion of the organic single-component small molecule 1,2-bis(4-alkoxyphenyl)ethane-1,2-dione (N-BOX) with multilevel stimuli-responsiveness between high-efficiency blue and yellow RTP by grinding or thermal annealing N-BOX crystals. The RTP emission of N-BOX in the crystalline state was easy to adjust by external stimuli (grinding or thermal annealing) due to its non-compact packing, which led to a phase transition and generated unique multilevel stimuli-responsiveness. In particular, the RTP quantum yield of 7-BOX with multilevel stimuli-responsiveness reached 68.4 %, which provides an opportunity for regulation of smart optical materials based on pure organic RTP.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202206157-sup-0001-1-BOX-_single_crystal.cif183.6 KB | Supporting Information |
anie202206157-sup-0001-11-BOX-_single_crystal.cif228 KB | Supporting Information |
anie202206157-sup-0001-13-BOX-_single_crystal.cif577.8 KB | Supporting Information |
anie202206157-sup-0001-2-BOX-_single_crystal.cif164.3 KB | Supporting Information |
anie202206157-sup-0001-3-BOX-_single_crystal.cif569.6 KB | Supporting Information |
anie202206157-sup-0001-4-BOX-_single_crystal.cif623.4 KB | Supporting Information |
anie202206157-sup-0001-5-BOX-_single_crystal.cif279.3 KB | Supporting Information |
anie202206157-sup-0001-6-BOX-_single_crystal.cif246.7 KB | Supporting Information |
anie202206157-sup-0001-7-BOX-_single_crystal.cif342.1 KB | Supporting Information |
anie202206157-sup-0001-misc_information.pdf8.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aQ. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962–973;
- 1bJ. Yang, M. Fang, Z. Li, Acc. Mater. Res. 2021, 2, 644–654.
- 2
- 2aJ. Ren, Y. Wang, Y. Tian, Z. Liu, X. Xiao, J. Yang, M. Fang, Z. Li, Angew. Chem. Int. Ed. 2021, 60, 12335–12340; Angew. Chem. 2021, 133, 12443–12448;
- 2bY. Tian, X. Yang, Y. Gong, Y. Wang, M. Fang, J. Yang, Z. Tang, Z. Li, Sci. China Chem. 2021, 64, 445–451;
- 2cW. Luo, Y. Zhang, Y. Gong, Q. Zhou, Y. Zhang, W. Yuan, Chin. Chem. Lett. 2018, 29, 1533–1536.
- 3
- 3aY. I. Park, O. Postupna, A. Zhugayevych, H. Shin, Y. S. Park, B. Kim, H. J. Yen, P. Cheruku, J. S. Martinez, J. W. Park, S. Tretiak, H. L. Wang, Chem. Sci. 2015, 6, 789–797;
- 3bS. Sun, L. Ma, J. Wang, X. Ma, H. Tian, Natl. Sci. Rev. 2021, 8, nwab085;
- 3cY. Liu, Z. Ma, X. Cheng, C. Qian, J. Liu, X. Zhang, M. Chen, X. Jia, Z. Ma, J. Mater. Chem. C 2021, 9, 5227–5233.
- 4
- 4aS. Sun, J. Wang, L. Ma, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 18557–18560; Angew. Chem. 2021, 133, 18705–18708;
- 4bT. Wang, Z. Hu, X. Nie, L. Huang, M. Hui, X. Sun, G. Zhang, Nat. Commun. 2021, 12, 1364;
- 4cY. Wang, J. Yang, M. Fang, Y. Yu, B. Zou, L. Wang, Y. Tian, J. Cheng, B. Z. Tang, Matter 2020, 3, 449–463.
- 5
- 5aL. Ma, S. Sun, B. Ding, X. Ma, H. Tian, Adv. Funct. Mater. 2021, 31, 2010659;
- 5bW.-G. Chen, Z.-J. Chen, L. Zhang, B. Wang, Z.-Z. Lin, R. Cao, W.-R. Wang, Y. Chen, Y. Wang, Chem. Eng. J. 2022, 432, 134411;
- 5cY. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nat. Commun. 2021, 12, 2297.
- 6D.-A. Xu, Q.-Y. Zhou, X. Dai, X.-K. Ma, Y.-M. Zhang, X. Xu, Y. Liu, Chin. Chem. Lett. 2022, 33, 851–854.
- 7D.-H. Kim, A. D'Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, C. Adachi, Nat. Photon. 2018, 12, 98–104.
- 8X. Wang, H. Ma, M. Gu, C. Lin, N. Gan, Z. Xie, H. Wang, L. Bian, L. Fu, S. Cai, Z. Chi, W. Yao, Z. An, H. Shi, W. Huang, Chem. Mater. 2019, 31, 5584–5591.
- 9
- 9aD. Li, J. Yang, M. Fang, B. Z. Tang, Z. Li, Sci. Adv. 2022, 8, eabl8392;
- 9bL. Gu, H. Wu, H. Ma, W. Ye, W. Jia, H. Wang, H. Chen, N. Zhang, D. Wang, C. Qian, Z. An, W. Huang, Y. Zhao, Nat. Commun. 2020, 11, 944.
- 10
- 10aK. Jiang, Y. Wang, C. Cai, H. Lin, Adv. Mater. 2018, 30, 1800783;
- 10bQ. Feng, Z. Xie, M. Zheng, Chem. Eng. J. 2021, 420, 127647.
- 11
- 11aH. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H. Yang, G. Jenkins, Q. Zhao, W. Huang, Nat. Commun. 2014, 5, 3601;
- 11bL. Liu, X. Wang, N. Wang, T. Peng, S. Wang, Angew. Chem. Int. Ed. 2017, 56, 9160–9164; Angew. Chem. 2017, 129, 9288–9292;
- 11cM.-J. Sun, Y.-W. Zhong, J. Yao, Angew. Chem. Int. Ed. 2018, 57, 7820–7825; Angew. Chem. 2018, 130, 7946–7951;
- 11dP. Tao, S. J. Liu, W. Y. Wong, Adv. Opt. Mater. 2020, 8, 2000985;
- 11eD. Temerova, K. S. Kisel, T. Eskelinen, A. S. Melnikov, N. Kinnunen, P. Hirva, J. R. Shakirova, S. P. Tunik, E. V. Grachova, I. O. Koshevoy, Inorg. Chem. Front. 2021, 8, 2549–2560.
- 12
- 12aT. Su, Y.-H. Liu, Y. Chen, Y. Liu, J. Mater. Chem. C 2022, 10, 2623–2630;
- 12bY. Tian, J. Yang, Z. Liu, M. Gao, X. Li, W. Che, M. Fang, Z. Li, Angew. Chem. Int. Ed. 2021, 60, 20259–20263; Angew. Chem. 2021, 133, 20421–20425;
- 12cW. Dai, X. Niu, X. Wu, Y. Ren, Y. Zhang, G. Li, H. Su, Y. Lei, J. Xiao, J. Shi, B. Tong, Z. Cai, Y. Dong, Angew. Chem. Int. Ed. 2022, 61, e202200236; Angew. Chem. 2022, 134, e202200236.
- 13
- 13aY. Takeda, T. Kaihara, M. Okazaki, H. Higginbotham, P. Data, N. Tohnai, S. Minakata, Chem. Commun. 2018, 54, 6847–6850;
- 13bS. Li, Y. Xie, A. Li, X. Li, W. Che, J. Wang, H. Shi, Z. Li, Sci. China Mater. 2021, 64, 2813–2823;
- 13cY. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang, Adv. Mater. 2015, 27, 6195–6201;
- 13dB. Xu, H. Wu, J. Chen, Z. Yang, Z. Yang, Y. C. Wu, Y. Zhang, C. Jin, P. Y. Lu, Z. Chi, S. Liu, J. Xu, M. Aldred, Chem. Sci. 2017, 8, 1909–1914;
- 13eL. Huang, L. Liu, X. Li, H. Hu, M. Chen, Q. Yang, Z. Ma, X. Jia, Angew. Chem. Int. Ed. 2019, 58, 16445–16450; Angew. Chem. 2019, 131, 16597–16602;
- 13fL. Huang, X. Wen, J. Liu, M. Chen, Z. Ma, X. Jia, Mater. Chem. Front. 2019, 3, 2151–2156;
- 13gZ. Mao, Z. Yang, Y. Mu, Y. Zhang, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, A. Lien, J. Xu, Angew. Chem. Int. Ed. 2015, 54, 6270–6273; Angew. Chem. 2015, 127, 6368–6371;
- 13hX. Zhou, S. Xu, L. Liu, Y. Sun, J. Cheng, X. Duan, L. Zhou, H. Qu, Dyes Pigm. 2021, 188, 109193;
- 13iP. Xue, J. Sun, P. Chen, P. Wang, B. Yao, P. Gong, Z. Zhang, R. Lu, Chem. Commun. 2015, 51, 10381–10384;
- 13jI. Bhattacharjee, N. Acharya, D. Ray, Chem. Commun. 2019, 55, 1899–1902;
- 13kG. Liu, Y. Zhao, Adv. Sci. 2017, 4, 1700021.
- 14
- 14aR. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater. 2016, 28, 655–660;
- 14bT. Wang, X. Su, X. Zhang, X. Nie, L. Huang, X. Zhang, X. Sun, Y. Luo, G. Zhang, Adv. Mater. 2019, 31, 1904273;
- 14cD. Chen, W. Li, L. Gan, Z. Wang, M. Li, S.-J. Su, Mater. Sci. Eng. R 2020, 142, 100581.
- 15H. Chen, X. Yao, X. Ma, H. Tian, Adv. Opt. Mater. 2016, 4, 1397–1401.
- 16
- 16aK. X. Teng, L. Y. Niu, Y. F. Kang, Q. Z. Yang, Chem. Sci. 2020, 11, 9703–9711;
- 16bJ. Wang, Z. Huang, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 9928–9933; Angew. Chem. 2020, 132, 10014–10019.
- 17
- 17aY. Zhou, T. Kurosawa, W. Ma, Y. Guo, L. Fang, K. Vandewal, Y. Diao, C. Wang, Q. Yan, J. Reinspach, J. Mei, A. L. Appleton, G. I. Koleilat, Y. Gao, S. C. Mannsfeld, A. Salleo, H. Ade, D. Zhao, Z. Bao, Adv. Mater. 2014, 26, 3767–3772;
- 17bP. Srujana, T. P. Radhakrishnan, Angew. Chem. Int. Ed. 2015, 54, 7270–7274; Angew. Chem. 2015, 127, 7378–7382;
- 17cK. Nagarajan, G. Gopan, R. T. Cheriya, M. Hariharan, Chem. Commun. 2017, 53, 7409–7411;
- 17dH. Gao, Z. Gao, D. Jiao, J. Zhang, X. Li, Q. Tang, Y. Shi, D. Ding, Small 2021, 17, 2005449.
- 18
- 18aW. Zhao, T. S. Cheung, N. Jiang, W. Huang, J. W. Y. Lam, X. Zhang, Z. He, B. Z. Tang, Nat. Commun. 2019, 10, 1595;
- 18bW. Zhao, Z. He, J. W. Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592–602;
- 18cE. Hamzehpoor, D. F. Perepichka, Angew. Chem. Int. Ed. 2020, 59, 9977–9981; Angew. Chem. 2020, 132, 10063–10067.
- 19Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181–2185; Angew. Chem. 2016, 128, 2221–2225.
- 20A. I. Williamson, Justus Liebigs Ann. Chem. 1851, 77, 37–49.
- 21
- 21aP. Chinwangso, L. R. S. Hill, M. D. Marquez, T. R. Lee, Molecules 2018, 23, 2632;
- 21bM. Goel, M. Jayakannan, J. Phys. Chem. B 2010, 114, 12508–12519.
- 22J. I. Crowley, R. D. Balanson, J. J. Mayerle, J. Am. Chem. Soc. 1983, 105, 6416–6423.
- 23Y. Y. Gong, Y. Q. Tan, H. Li, Y. R. Zhang, W. Z. Yuan, Y. M. Zhang, J. Z. Sun, B. Z. Tang, Sci. China Chem. 2013, 56, 1183–1186.