Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens
Corresponding Author
Dr. In Seob Park
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorHyukgi Min
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takuma Yasuda
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. In Seob Park
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorHyukgi Min
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takuma Yasuda
INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorGraphical Abstract
A selenium-doped polycyclic organoboron emitter exhibits ultrafast triplet–singlet exciton interconversion ability in addition to strong narrowband blue emission. Its spin-flip reverse intersystem crossing (RISC) rate exceeds 108 s−1 (100 million times spin inversion per second), enabling superimposed fluorescence with full exciton utilization. This breakthrough shatters the stereotypical physicochemical views of conventional thermally activated delayed fluorescence limited by slow RISC.
Abstract
Narrowband emissive organoboron emitters featuring the multi-resonance (MR) effect have now become a critical material component for constructing high-performance organic light-emitting diodes (OLEDs) with pure emission colors. These MR organoboron emitters are capable of exhibiting high-efficiency narrowband thermally activated delayed fluorescence (TADF) by allowing triplet-to-singlet reverse intersystem crossing (RISC). However, RISC involving spin-flip exciton upconversion is generally the rate-limiting step in the overall TADF; hence, a deeper understanding and precise control of the RISC dynamics are ongoing crucial challenges. Here, we introduce the first MR organoboron emitter (CzBSe) doped with a selenium atom, demonstrating a record-high RISC rate exceeding 108 s−1, which is even higher than its fluorescence radiation rate. Furthermore, the spin-flip upconversion process in CzBSe can be accelerated by factors of ≈20000 and ≈800, compared to those of its oxygen- and sulfur-doped homologs (CzBO and CzBS), respectively. Unlike CzBO and CzBS, the photophysical rate-limiting step in CzBSe is no longer RISC, but the fluorescence radiation process; this behavior is completely different from the conventional time-delaying TADF limited by the slow RISC. Benefitting from its ultrafast exciton spin conversion ability, OLEDs incorporating CzBSe achieved a maximum external electroluminescence quantum efficiency as high as 23.9 %, accompanied by MR-induced blue narrowband emission and significantly alleviated efficiency roll-off features.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202205684-sup-0001-CzBO.cif282.9 KB | Supporting Information |
anie202205684-sup-0001-CzBS.cif304.4 KB | Supporting Information |
anie202205684-sup-0001-CzBSe.cif572.1 KB | Supporting Information |
anie202205684-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Frenkel, Phys. Rev. 1931, 37, 17–44.
- 2M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151–154.
- 3D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, J. P. Spindler, J. Appl. Phys. 2009, 106, 124510.
- 4H. Uoyama, K. Goushi, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 5A. Rao, P. C. Y. Chow, S. Gélinas, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, D. S. Ginger, R. H. Friend, Nature 2013, 500, 435–439.
- 6R. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. V. Voorhis, M. A. Baldo, Science 2013, 340, 334–337.
- 7W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, Science 1988, 241, 1649–1651.
- 8J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M. Miyake, Science 2016, 352, 1082–1086.
- 9L. R. Weiss, S. L. Bayliss, F. Kraffert, K. J. Thorley, J. E. Anthony, R. Bittl, R. H. Friend, A. Rao, N. C. Greenham, J. Behrends, Nat. Phys. 2017, 13, 176–181.
- 10For reviews, see:
- 10aY. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931–7958;
- 10bM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444;
- 10cY. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946–1963;
- 10dY. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
- 11K. Matsuo, T. Yasuda, Chem. Sci. 2019, 10, 10687–10697.
- 12L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636–642.
- 13Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photonics 2020, 14, 643–649.
- 14N. Aizawa, A. Matsumoto, T. Yasuda, Sci. Adv. 2021, 7, eabe5769.
- 15C. Murawski, K. Leo, M. C. Gather, Adv. Mater. 2013, 25, 6801–6827.
- 16P. A. M. Dirac, Proc. R. Soc. London Ser. A 1927, 114, 243–265.
- 17R. A. Marcus, J. Chem. Phys. 1984, 81, 4494–4500.
- 18J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971–5004.
- 19P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042–4051.
- 20I. S. Park, K. Matsuo, N. Aizawa, T. Yasuda, Adv. Funct. Mater. 2018, 28, 1802031.
- 21M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
- 22T. Agou, K. Matsuo, R. Kawano, I. S. Park, T. Hosoya, H. Fukumoto, T. Kubota, Y. Mizuhata, N. Tokitoh, T. Yasuda, ACS Mater. Lett. 2020, 2, 28–34.
- 23T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 24K. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198.
- 25Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682.
- 26S. Oda, B. Kawakami, R. Kawasumi, R. Okita, T. Hatakeyama, Org. Lett. 2019, 21, 9311–9314.
- 27N. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Adv. Mater. 2020, 32, 2004072.
- 28S. Oda, W. Kumano, T. Hama, R. Kawasumi, K. Yoshiura, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 2882–2886; Angew. Chem. 2021, 133, 2918–2922.
- 29H. Tanaka, S. Oda, G. Ricci, H. Gotoh, K. Tabata, R. Kawasumi, D. Beljonne, Y. Olivier, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 17910–17914; Angew. Chem. 2021, 133, 18054–18058.
- 30X. Liang, Z.-P. Yan, H.-B. Han, Z.-G. Wu, Y.-X. Zheng, H. Meng, J.-L. Zuo, W. Huang, Angew. Chem. Int. Ed. 2018, 57, 11316–11320; Angew. Chem. 2018, 130, 11486–11490.
- 31Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912–16917; Angew. Chem. 2019, 131, 17068–17073.
- 32Y. Xu, Z. Cheng, Z. Li, B. Liang, J. Wang, J. Wei, Z. Zhang, Y. Wang, Adv. Opt. Mater. 2020, 8, 1902142.
- 33Y. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442–17446; Angew. Chem. 2020, 132, 17595–17599.
- 34Y. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, L. Duan, Angew. Chem. Int. Ed. 2020, 59, 17499–17503; Angew. Chem. 2020, 132, 17652–17656.
- 35M. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468–19472.
- 36F. Chen, L. Zhao, X. Wang, Q. Yang, W. Li, H. Tian, S. Shao, L. Wang, X. Jing, F. Wang, Sci. China Chem. 2021, 64, 547–551.
- 37Y. Qi, W. Ning, Y. Zou, X. Cao, S. Gong, C. Yang, Adv. Funct. Mater. 2021, 31, 2102017.
- 38Y. Liu, X. Xiao, Y. Ran, Z. Bin, J. You, Chem. Sci. 2021, 12, 9408–9412.
- 39M. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 20280–20285; Angew. Chem. 2021, 133, 20442–20447.
- 40T. Hua, L. Zhan, N. Li, Z. Huang, X. Cao, Z. Xiao, S. Gong, C. Zhou, C. Zhong, C. Yang, Chem. Eng. J. 2021, 426, 131169.
- 41Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503; Angew. Chem. 2021, 133, 20661–20666.
- 42M. Yang, S. Shikita, H. Min, I. S. Park, H. Shibata, N. Amanokura, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 23142–23147; Angew. Chem. 2021, 133, 14059–14065.
- 43P. Jiang, L. Zhan, X. Cao, X. Lv, S. Gong, Z. Chen, C. Zhou, Z. Huang, F. Ni, Y. Zou, C. Yang, Adv. Opt. Mater. 2021, 9, 2100825.
- 44J. Park, J. Lim, J. H. Lee, B. Jang, J. H. Han, S. S. Yoon, J. Y. Lee, ACS Appl. Mater. Interfaces 2021, 13, 45798–45805.
- 45Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202113206; Angew. Chem. 2022, 134, e202113206.
- 46P. Jiang, J. Miao, X. Cao, H. Xia, K. Pan, T. Hua, X. Lv, Z. Huang, Y. Zou, C. Yang, Adv. Mater. 2022, 34, 2106954.
- 47I. S. Park, M. Yang, H. Shibata, N. Amanokura, T. Yasuda, Adv. Mater. 2022, 34, 2107951.
- 48Q. Li, Y. Wu, X. Wang, Q. Yang, J. Hu, R. Zhong, S. Shao, L. Wang, Chem. Eur. J. 2022, 28, e202104214.
- 49J. Han, Z. Huang, X. Lv, J. Miao, Y. Qiu, X. Cao, C. Yang, Adv. Opt. Mater. 2022, 10, 2102092.
- 50S. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, J. Am. Chem. Soc. 2022, 144, 106–112.
- 51
- 51aR. Acharya, S. Cekli, C. J. Zeman IV, R. M. Altamimi, K. S. Schanze, J. Phys. Chem. Lett. 2016, 7, 693–697;
- 51bL. Xu, G. Li, T. Xu, W. Zhang, S. Zhang, S. Yin, Z. An, G. He, Chem. Commun. 2018, 54, 9226–9229;
- 51cD. de Sa Pereira, D. R. Lee, N. A. Kukhta, K. H. Lee, C. L. Kim, A. S. Batsanov, J. Y. Lee, A. P. Monkman, J. Mater. Chem. C 2019, 7, 10481–10490;
- 51dB. H. Drummond, G. C. Hoover, A. J. Gillett, N. Aizawa, W. K. Myers, B. T. McAllister, S. T. E. Jones, Y.-J. Pu, D. Credgington, D. S. Seferos, J. Phys. Chem. C 2020, 124, 6364–6370;
- 51eL. Xu, K. Zhou, H. Ma, A. Lv, D. Pei, G. Li, Y. Zhang, Z. An, A. Li, G. He, ACS Appl. Mater. Interfaces 2020, 12, 18385–18394;
- 51fD. R. Lee, K. H. Lee, W. Shao, C. L. Kim, J. Kim, J. Y. Lee, Chem. Mater. 2020, 32, 2583–2592;
- 51gH. Chen, Y. Deng, X. Zhu, L. Wang, L. Lv, X. Wu, Z. Li, Q. Shi, A. Peng, Q. Peng, Z. Shuai, Z. Zhao, H. Chen, H. Huang, Chem. Mater. 2020, 32, 4038–4044;
- 51hS. Wang, H. Shu, X. Han, X. Wu, H. Tong, L. Wang, J. Mater. Chem. C 2021, 9, 9907–9913;
- 51iS. Goto, Y. Nitta, N. O. Decarli, L. E. de Sousa, P. Stachelek, N. Tohnai, S. Minakata, P. de Silva, P. Data, Y. Takeda, J. Mater. Chem. C 2021, 9, 13942–13953.
- 52Deposition Numbers 2155023, 2155024, and 2155025 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 53
- 53aZ. Zhou, A. Wakamiya, T. Kushida, S. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 4529–4532;
- 53bS. Saito, K. Matsuo, S. Yamaguchi, J. Am. Chem. Soc. 2012, 134, 9130–9133;
- 53cM. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, J. Am. Chem. Soc. 2019, 119, 8291–8331.
- 54F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. B. Berberan-Santos, M. R. Bryce, A. P. Monkman, Adv. Sci. 2016, 3, 1600080.
- 55C. M. Marian, J. Phys. Chem. C 2016, 120, 3715–3721.
- 56H. Min, I. S. Park, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 7643–7648; Angew. Chem. 2021, 133, 7721–7726.
- 57I. Kim, K. H. Cho, S. O. Jeon, W.-J. Son, D. Kim, Y. M. Rhee, I. Jang, H. Choi, D. S. Kim, JACS Au 2021, 1, 987–997.
- 58S. M. Pratik, V. Coropceanu, J.-L. Brédas, ACS Mater. Lett. 2022, 4, 440–447.
- 59T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 2018, 118, 6975–7025.
- 60
- 60aM. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834–2838;
- 60bM. A. El-Sayed, Acc. Chem. Res. 1968, 1, 816.
- 61K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253–258.
- 62J. Lee, N. Aizawa, T. Yasuda, Chem. Mater. 2017, 29, 8012–8020.