Unraveling Charge-Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques
Dr. Ruotian Chen
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Fengtao Fan
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorProf. Can Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorDr. Ruotian Chen
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Fengtao Fan
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorProf. Can Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023 China
Search for more papers by this authorGraphical Abstract
Charge separation is key to efficient photocatalytic solar energy conversion. The distribution of surface charge on photocatalysts can be identified and the driving forces of charge separation quantitatively determined at the nanoscale by the spatially resolved surface photovoltage technique. The identification of photocatalytic charge separation mechanisms will enable the rational design of efficient photocatalytic systems.
Abstract
The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aQ. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611–615;
- 1bS. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050;
- 1cT. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387–399.
- 2
- 2aC. S. Ponseca, Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstrom, Chem. Rev. 2017, 117, 10940–11024;
- 2bJ. B. Baxter, C. Richter, C. A. Schmuttenmaer, Annu. Rev. Phys. Chem. 2014, 65, 423–447;
- 2cS. Corby, R. R. Rao, L. Steier, J. R. Durrant, Nat. Rev. Mater. 2021, 6, 1136–1155.
- 3D. Wang, T. Sheng, J. Chen, H.-F. Wang, P. Hu, Nat. Catal. 2018, 1, 291–299.
- 4
- 4aF. Le Formal, E. Pastor, S. D. Tilley, C. A. Mesa, S. R. Pendlebury, M. Gratzel, J. R. Durrant, J. Am. Chem. Soc. 2015, 137, 6629–6637;
- 4bC. A. Mesa, L. Francas, K. R. Yang, P. Garrido-Barros, E. Pastor, Y. Ma, A. Kafizas, T. E. Rosser, M. T. Mayer, E. Reisner, M. Gratzel, V. S. Batista, J. R. Durrant, Nat. Chem. 2020, 12, 82–89.
- 5F. Chen, T. Ma, T. Zhang, Y. Zhang, H. Huang, Adv. Mater. 2021, 33, 2005256.
- 6L. Kronik, Y. Shapira, Surf. Sci. Rep. 1999, 37, 1–206.
- 7
- 7aS. C. Warren, K. Voitchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hebert, A. Rothschild, M. Gratzel, Nat. Mater. 2013, 12, 842–849;
- 7bJ. B. Sambur, T. Y. Chen, E. Choudhary, G. Chen, E. J. Nissen, E. M. Thomas, N. Zou, P. Chen, Nature 2016, 530, 77–80;
- 7cJ. Eichhorn, C. Kastl, J. K. Cooper, D. Ziegler, A. M. Schwartzberg, I. D. Sharp, F. M. Toma, Nat. Commun. 2018, 9, 2597.
- 8M. Hesari, X. Mao, P. Chen, J. Am. Chem. Soc. 2018, 140, 6729–6740.
- 9R. Chen, F. Fan, T. Dittrich, C. Li, Chem. Soc. Rev. 2018, 47, 8238–8262.
- 10W. Melitz, J. Shen, A. C. Kummel, S. Lee, Surf. Sci. Rep. 2011, 66, 1–27.
- 11
- 11aI. Mora-Seró, T. Dittrich, G. Garcia-Belmonte, J. Bisquert, J. Appl. Phys. 2006, 100, 103705;
- 11bD. Gross, I. Mora-Sero, T. Dittrich, A. Belaidi, C. Mauser, A. J. Houtepen, E. Da Como, A. L. Rogach, J. Feldmann, J. Am. Chem. Soc. 2010, 132, 5981–5983.
- 12
- 12aZ. Zhang, J. T. Yates, Jr., Chem. Rev. 2012, 112, 5520–5551;
- 12bF. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. Int. Ed. 2019, 58, 10061–10073; Angew. Chem. 2019, 131, 10164–10176.
- 13
- 13aS. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo, J. W. Tang, Energy Environ. Sci. 2015, 8, 731–759;
- 13bJ. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.
- 14
- 14aJ. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Angew. Chem. Int. Ed. 2008, 47, 1766–1769; Angew. Chem. 2008, 120, 1790–1793;
- 14bX. Wang, Q. Xu, M. Li, S. Shen, X. Wang, Y. Wang, Z. Feng, J. Shi, H. Han, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13089–13092; Angew. Chem. 2012, 124, 13266–13269.
- 15
- 15aR. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 2013, 4, 1432;
- 15bS. Wang, G. Liu, L. Wang, Chem. Rev. 2019, 119, 5192–5247.
- 16
- 16aS. U. Nanayakkara, G. Cohen, C. S. Jiang, M. J. Romero, K. Maturova, M. Al-Jassim, J. van de Lagemaat, Y. Rosenwaks, J. M. Luther, Nano Lett. 2013, 13, 1278–1284;
- 16bS. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, J. Am. Chem. Soc. 2014, 136, 1872–1878;
- 16cS. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, C. Li, J. Am. Chem. Soc. 2017, 139, 11771–11778;
- 16dY. Gao, W. Nie, Q. Zhu, X. Wang, S. Wang, F. Fan, C. Li, Angew. Chem. Int. Ed. 2020, 59, 18218–18223; Angew. Chem. 2020, 132, 18375–18380.
- 17Y. Yang, J. Gu, J. L. Young, E. M. Miller, J. A. Turner, N. R. Neale, M. C. Beard, Science 2015, 350, 1061–1065.
- 18R. Chen, J. Zhu, H. An, F. Fan, C. Li, Faraday Discuss. 2017, 198, 473–479.
- 19S. F. Zhang, A. T. Connie, D. A. Laleyan, H. P. T. Nguyen, Q. Wang, J. Song, I. S. Shih, Z. T. Mi, IEEE J. Quantum Electron. 2014, 50, 483–490.
- 20B. Weng, M.-Y. Qi, C. Han, Z.-R. Tang, Y.-J. Xu, ACS Catal. 2019, 9, 4642–4687.
- 21
- 21aK. Wenderich, A. Klaassen, I. Siretanu, F. Mugele, G. Mul, Angew. Chem. Int. Ed. 2014, 53, 12476–12479; Angew. Chem. 2014, 126, 12684–12687;
- 21bX. Mao, C. Liu, M. Hesari, N. Zou, P. Chen, Nat. Chem. 2019, 11, 687–694;
- 21cY. A. Wu, I. McNulty, C. Liu, K. C. Lau, Q. Liu, A. P. Paulikas, C.-J. Sun, Z. Cai, J. R. Guest, Y. Ren, V. Stamenkovic, L. A. Curtiss, Y. Liu, T. Rajh, Nat. Energy 2019, 4, 957–968.
- 22J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Angew. Chem. Int. Ed. 2015, 54, 9111–9114; Angew. Chem. 2015, 127, 9239–9242.
- 23J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie, J. Cui, R. Chen, H. An, F. Fan, C. Li, Nano Lett. 2017, 17, 6735–6741.
- 24
- 24aJ. H. Yang, D. G. Wang, H. X. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909;
- 24bB. Qiu, M. Du, Y. Ma, Q. Zhu, M. Xing, J. Zhang, Energy Environ. Sci. 2021, 14, 5260–5288.
- 25W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, J. Huskens, Nat. Energy 2018, 3, 185–192.
- 26
- 26aD. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. A. Sokol, Nat. Mater. 2013, 12, 798–801;
- 26bY. Nosaka, A. Y. Nosaka, J. Phys. Chem. Lett. 2016, 7, 431–434.
- 27Y. Gao, J. Zhu, H. An, P. Yan, B. Huang, R. Chen, F. Fan, C. Li, J. Phys. Chem. Lett. 2017, 8, 1419–1423.
- 28
- 28aH. Yoo, C. Bae, Y. Yang, S. Lee, M. Kim, H. Kim, Y. Kim, H. Shin, Nano Lett. 2014, 14, 4413–4417;
- 28bH. Li, Y. Gao, Y. Zhou, F. Fan, Q. Han, Q. Xu, X. Wang, M. Xiao, C. Li, Z. Zou, Nano Lett. 2016, 16, 5547–5552;
- 28cX. D. Wang, Y. H. Huang, J. F. Liao, Y. Jiang, L. Zhou, X. Y. Zhang, H. Y. Chen, D. B. Kuang, J. Am. Chem. Soc. 2019, 141, 13434–13441.
- 29T. A. Pham, Y. Ping, G. Galli, Nat. Mater. 2017, 16, 401–408.
- 30
- 30aS. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager 3rd, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143–147;
- 30bW. Z. Wu, Z. L. Wang, Nat. Rev. Mater. 2016, 1, 16031.
- 31H. Simons, A. B. Haugen, A. C. Jakobsen, S. Schmidt, F. Stohr, M. Majkut, C. Detlefs, J. E. Daniels, D. Damjanovic, H. F. Poulsen, Nat. Mater. 2018, 17, 814–819.
- 32J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akbashev, A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Hawley, D. Imbrenda, G. Xiao, A. L. Bennett-Jackson, C. L. Johnson, Nat. Photonics 2016, 10, 611–616.
- 33
- 33aM. Wang, B. Wang, F. Huang, Z. Lin, Angew. Chem. Int. Ed. 2019, 58, 7526–7536; Angew. Chem. 2019, 131, 7606–7616;
- 33bC. Hu, S. Tu, N. Tian, T. Ma, Y. Zhang, H. Huang, Angew. Chem. Int. Ed. 2021, 60, 16309–16328; Angew. Chem. 2021, 133, 16445–16464;
- 33cL. Liu, H. Huang, Z. Chen, H. Yu, K. Wang, J. Huang, H. Yu, Y. Zhang, Angew. Chem. Int. Ed. 2021, 60, 18303–18308; Angew. Chem. 2021, 133, 18451–18456;
- 33dS. B. Wang, X. Han, Y. H. Zhang, N. Tian, T. Y. Ma, H. W. Huang, Small Struct. 2021, 2, 2000061.
- 34Y. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi, N. Ta, R. Chen, Y. Gao, H. An, W. Nie, H. Jing, F. Fan, C. Li, Adv. Mater. 2020, 32, 1906513.
- 35C. H. Ahn, K. M. Rabe, J. M. Triscone, Science 2004, 303, 488–491.
- 36G. Liu, L. Ma, L.-C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, H.-M. Cheng, Joule 2018, 2, 1095–1107.
- 37
- 37aI. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509–512;
- 37bY. Noguchi, Y. Taniguchi, R. Inoue, M. Miyayama, Nat. Commun. 2020, 11, 966.
- 38Y. J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, Y. Iwasa, Nature 2019, 570, 349–353.
- 39M. M. Yang, D. J. Kim, M. Alexe, Science 2018, 360, 904–907.
- 40H. Dember, Phys. Z. 1931, 32, 554–556.
- 41
- 41aS. K. Chattopadhyaya, V. K. Mathur, J. Appl. Phys. 1969, 40, 1930–1933;
- 41bS. R. Goldman, K. Kalikstein, B. Kramer, J. Appl. Phys. 1978, 49, 2849.
- 42
- 42aS. Schäfer, Z. Wang, R. Zierold, T. Kipp, A. Mews, Nano Lett. 2011, 11, 2672–2677;
- 42bB. Liao, E. Najafi, H. Li, A. J. Minnich, A. H. Zewail, Nat. Nanotechnol. 2017, 12, 871–876.
- 43M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, D. Zhang, ACS Nano 2016, 10, 6693–6701.
- 44R. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan, C. Li, Nat. Energy 2018, 3, 655–663.
- 45
- 45aH. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205–213;
- 45bO. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, Nat. Nanotechnol. 2013, 8, 807–819.
- 46
- 46aZ. Guo, Y. Wan, M. J. Yang, J. Snaider, K. Zhu, L. B. Huang, Science 2017, 356, 59–62;
- 46bE. Najafi, V. Ivanov, A. Zewail, M. Bernardi, Nat. Commun. 2017, 8, 15177.
- 47H. J. Queisser, E. E. Haller, Science 1998, 281, 945–950.
- 48
- 48aJ. S. Park, S. Kim, Z. Xie, A. Walsh, Nat. Rev. Mater. 2018, 3, 194–210;
- 48bS. Selim, E. Pastor, M. García-Tecedor, M. R. Morris, L. Francàs, M. Sachs, B. Moss, S. Corby, C. A. Mesa, S. Gimenez, A. Kafizas, A. A. Bakulin, J. R. Durrant, J. Am. Chem. Soc. 2019, 141, 18791–18798.
- 49J. M. Ball, A. Petrozza, Nat. Energy 2016, 1, 16149.
- 50L. M. Carneiro, S. K. Cushing, C. Liu, Y. Su, P. Yang, A. P. Alivisatos, S. R. Leone, Nat. Mater. 2017, 16, 819–825.
- 51H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan, Y. Xie, J. Am. Chem. Soc. 2018, 140, 1760–1766.
- 52
- 52aS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005–1009;
- 52bL. Ji, H. Y. Hsu, X. Li, K. Huang, Y. Zhang, J. C. Lee, A. J. Bard, E. T. Yu, Nat. Mater. 2017, 16, 127–131.
- 53J. Luria, Y. Kutes, A. Moore, L. H. Zhang, E. A. Stach, B. D. Huey, Nat. Energy 2016, 1, 16150.
- 54
- 54aA. Zakutayev, C. M. Caskey, A. N. Fioretti, D. S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, J. Phys. Chem. Lett. 2014, 5, 1117–1125;
- 54bA. Walsh, A. Zunger, Nat. Mater. 2017, 16, 964–967.
- 55Y. Yang, M. J. Yang, D. T. Moore, Y. Yan, E. M. Miller, K. Zhu, M. C. Beard, Nat. Energy 2017, 2, 16207.
- 56
- 56aS. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 2018, 53, 296–336;
- 56bH. Arandiyan, S. S. Mofarah, C. C. Sorrell, E. Doustkhah, B. Sajjadi, D. Hao, Y. Wang, H. Sun, B. J. Ni, M. Rezaei, Z. Shao, T. Maschmeyer, Chem. Soc. Rev. 2021, 50, 10116–10211.
- 57R. Chen, S. Pang, H. An, T. Dittrich, F. Fan, C. Li, Nano Lett. 2019, 19, 426–432.
- 58A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352, aad4424.
- 59T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411–414.
- 60N. Pavliček, L. Gross, Nat. Rev. Chem. 2017, 1, 0005.
- 61W. Gao, C. Addiego, H. Wang, X. Yan, Y. Hou, D. Ji, C. Heikes, Y. Zhang, L. Li, H. Huyan, T. Blum, T. Aoki, Y. Nie, D. G. Schlom, R. Wu, X. Pan, Nature 2019, 575, 480–484.
- 62D. C. Coffey, D. S. Ginger, Nat. Mater. 2006, 5, 735–740.
- 63
- 63aR. Giridharagopal, G. E. Rayermann, G. Shao, D. T. Moore, O. G. Reid, A. F. Tillack, D. J. Masiello, D. S. Ginger, Nano Lett. 2012, 12, 893–898;
- 63bL. Collins, M. Ahmadi, T. Wu, B. Hu, S. V. Kalinin, S. Jesse, ACS Nano 2017, 11, 8717–8729.
- 64
- 64aY. Terada, S. Yoshida, O. Takeuchi, H. Shigekawa, Nat. Photonics 2010, 4, 869–874;
- 64bM. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, R. Huber, Nat. Photonics 2014, 8, 841–845;
- 64cM. T. Hassan, J. S. Baskin, B. Liao, A. H. Zewail, Nat. Photonics 2017, 11, 425–430;
- 64dJ. Sung, C. Schnedermann, L. Ni, A. Sadhanala, R. Y. S. Chen, C. Cho, L. Priest, J. M. Lim, H.-K. Kim, B. Monserrat, P. Kukura, A. Rao, Nat. Phys. 2020, 16, 171–176;
- 64eM. Delor, H. L. Weaver, Q. Yu, N. S. Ginsberg, Nat. Mater. 2020, 19, 56–62.
- 65M. K. Man, A. Margiolakis, S. Deckoff-Jones, T. Harada, E. L. Wong, M. B. Krishna, J. Madeo, A. Winchester, S. Lei, R. Vajtai, P. M. Ajayan, K. M. Dani, Nat. Nanotechnol. 2017, 12, 36–40.
- 66
- 66aJ. L. Brédas, E. H. Sargent, G. D. Scholes, Nat. Mater. 2017, 16, 35–44;
- 66bM. Garg, K. Kern, Science 2020, 367, 411–415.
- 67J. H. K. Pfisterer, Y. Liang, O. Schneider, A. S. Bandarenka, Nature 2017, 549, 74–77.
- 68
- 68aL. Collins, S. Jesse, J. I. Kilpatrick, A. Tselev, O. Varenyk, M. B. Okatan, S. A. Weber, A. Kumar, N. Balke, S. V. Kalinin, B. J. Rodriguez, Nat. Commun. 2014, 5, 3871;
- 68bL. Collins, J. I. Kilpatrick, S. V. Kalinin, B. J. Rodriguez, Rep. Prog. Phys. 2018, 81, 086101;
- 68cE. Strelcov, C. Arble, H. Guo, B. D. Hoskins, A. Yulaev, I. V. Vlassiouk, N. B. Zhitenev, A. Tselev, A. Kolmakov, Nano Lett. 2020, 20, 1336–1344.
- 69
- 69aM. R. Nellist, F. A. L. Laskowski, J. Qiu, H. Hajibabaei, K. Sivula, T. W. Hamann, S. W. Boettcher, Nat. Energy 2018, 3, 46–52;
- 69bF. A. L. Laskowski, S. Z. Oener, M. R. Nellist, A. M. Gordon, D. C. Bain, J. L. Fehrs, S. W. Boettcher, Nat. Mater. 2020, 19, 69–76.
- 70E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim, Science 2018, 360, 521–525.