A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer
Liangwei Ma
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorQingyang Xu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorSiyu Sun
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorDr. Bingbing Ding
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorZizhao Huang
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Xiang Ma
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorLiangwei Ma
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorQingyang Xu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorSiyu Sun
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorDr. Bingbing Ding
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorZizhao Huang
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Xiang Ma
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
A universal, feasible, and simple approach for dynamic tunable afterglow systems based on a simple radiative energy transfer mechanism is presented. The persistent luminescence (τ>0.7 s) can be reversibly converted between different colors in the solid, solution, and gel states by controlling the isomerization of the energy acceptor through a simple radiative energy transfer (reabsorption) mechanism.
Abstract
In this work, a universal strategy for solid, solution, or gel state organic persistent luminescent materials via radiative energy transfer is proposed. The persistent luminescence (τ>0.7 s) could be remotely regulated between different colors by controlling the isomerization of the energy acceptor. The function relies on the simple radiative energy transfer (reabsorption) mechanism, rather than the complicated communication between the excited state of the molecules such as Förster resonance energy transfer or Dexter energy transfer. And the “apparent lifetime” for the energy acceptor is the same as the lifetime of the energy donor, which was different with a traditional radiative energy transfer process. The simple working principle endows this strategy with huge universality, flexibility, and operability. This work offers a simple, feasible, and universal way to construct various persistent luminescent materials in solid, solution, and gel states.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202115748-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
anie202115748-sup-0001-Video_S1_1BBI-DMBA-5_Before_UV.avi2.3 MB | Supporting Information |
anie202115748-sup-0001-Video_S2_1BBI-DMBA-5_After_UV.avi5.8 MB | Supporting Information |
anie202115748-sup-0001-Video_S3_P3-5_Before_UV.avi8.1 MB | Supporting Information |
anie202115748-sup-0001-Video_S4P3-5_After_UV.avi11.1 MB | Supporting Information |
anie202115748-sup-0001-Video_S5_P3-5-DOG_Before_UV.avi15.1 MB | Supporting Information |
anie202115748-sup-0001-Video_S6_P3-5-DOG_After_UV.avi8.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wang, Z. Huang, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 9928–9933; Angew. Chem. 2020, 132, 10014–10019.
- 2
- 2aX. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 2018, 57, 10854–10858; Angew. Chem. 2018, 130, 11020–11024;
- 2bY. Yang, J. Wang, D. Li, J. Yang, M. Fang, Z. Li, Adv. Mater. 2021, 33, 2101002.
- 3X. Q. Liu, K. Zhang, J. F. Gao, Y. Z. Chen, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed. 2020, 59, 23456–23460; Angew. Chem. 2020, 132, 23662–23666.
- 4
- 4aS. Sun, L. Ma, J. Wang, X. Ma, H. Tian, Natl. Sci. Rev. 2021, nwab085;
- 4bX. Wang, H. Xiao, P. Chen, Q. Yang, B. Chen, C. Tung, Y. Chen, L. Wu, J. Am. Chem. Soc. 2019, 141, 5045–5050;
- 4cL. Ma, S. Sun, B. Ding, X. Ma, H. Tian, Adv. Funct. Mater. 2021, 31, 2010659;
- 4dH. Shi, L. Zou, K. Huang, H. Wang, C. Sun, S. Wang, H. Ma, Y. He, J. Wang, H. Yu, W. Yao, Z. An, Q. Zhao, W. Huang, ACS Appl. Mater. Interfaces 2019, 11, 18103–18110.
- 5
- 5aN. J. Turro, Modern Molecular Photochemistry, The Benjamin/Cummings Publishing Company, 1978;
- 5bX. Ma, J. Wang, H. Tian, Acc. Chem. Res. 2019, 52, 738–748;
- 5cKenry, C. Chen, B. Liu, Nat. Commun. 2019, 10, 2111;
- 5dL. Bian, H. Ma, W. Ye, A. Lv, H. Wang, W. Jia, L. Gu, H. Shi, Z. An, W. Huang, Sci. China Chem. 2020, 63, 1443–1448.
- 6T. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 11206–11216; Angew. Chem. 2020, 132, 11302–11312.
- 7
- 7aY. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, eaas9732;
- 7bH. Wu, W. Chi, Z. Chen, G. Liu, L. Gu, A. K. Bindra, G. Yang, X. Liu, Y. Zhao, Adv. Funct. Mater. 2019, 29, 1807243;
- 7cG. Zhang, G. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.
- 8
- 8aZ. Y. Zhang, Y. Liu, Chem. Sci. 2019, 10, 7773–7778;
- 8bZ. Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 6028–6032; Angew. Chem. 2019, 131, 6089–6093.
- 9
- 9aC. Chen, Z. Chi, K. C. Chong, A. S. Batsanov, Z. Yang, Z. Mao, Z. Yang, B. Liu, Nat. Mater. 2021, 20, 175–180;
- 9bB. Ding, L. Ma, Z. Huang, X. Ma, H. Tian, Sci. Adv. 2021, 7, eabf9668.
- 10
- 10aM. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177–11181; Angew. Chem. 2014, 126, 11359–11363;
- 10bJ. Yang, M. Fang, Z. Li, Acc. Mater. Res. 2021, 2, 644–654.
- 11Z. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F. L. Gu, J. Zhao, Y. Zhang, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 31, 7352–7357.
- 12
- 12aM. Louis, H. Thomas, M. Gmelch, A. Haft, F. Fries, S. Reineke, Adv. Mater. 2019, 31, 1807887;
- 12bQ. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962–973.
- 13
- 13aY. Ning, J. Yang, H. Si, H. Wu, X. Zheng, A. Qin, B. Z. Tang, Sci. China Chem. 2021, 64, 739–744;
- 13bQ. Dang, Y. Jing, J. Wang, J. Wang, Q. Zhang, M. Zhang, S. Luo, Y. Xie, K. Pu, Q. Li, Z. Li, Adv. Mater. 2020, 32, 2006752.
- 14
- 14aH. Gui, Z. Huang, Z. Yuan, X. Ma, CCS Chem. 2021, 3, 481–489;
- 14bS. Kuila, S. J. George, Angew. Chem. Int. Ed. 2020, 59, 9393–9397; Angew. Chem. 2020, 132, 9479–9483;
- 14cX. Tao, Z. Liao, Y. Zhang, F. Fu, M. Hao, Y. Song, E. Song, Chin. Chem. Lett. 2021, 32, 791–795.
- 15
- 15aY. Ma, H. Xiao, X. Yang, L. Niu, L. Wu, C. Tung, Y. Chen, Q. Yang, J. Phys. Chem. C 2016, 120, 16507–16515;
- 15bH. Liu, J. Chen, Y. Fu, Z. Zhao, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2103273.
- 16K. Uno, H. Niikura, M. Morimoto, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 2011, 133, 13558–13564.
- 17B. Chen, W. Huang, H. Su, H. Miao, X. Zhang, G. Zhang, Angew. Chem. Int. Ed. 2020, 59, 10023–10026; Angew. Chem. 2020, 132, 10109–10112.
- 18S. Sun, J. Wang, L. Ma, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 18557–18560; Angew. Chem. 2021, 133, 18705–18708.
- 19
- 19aL. Zhang, T. Wang, Z. Shen, M. Liu, Adv. Mater. 2016, 28, 1044–1059;
- 19bY. Sun, Y. Zhang, Y. Song, Y. Liu, X. Zhang, Dyes Pigm. 2021, 193, 109546;
- 19cW. J. Qu, H. H. Yang, J. P. Hu, P. Qin, X. X. Zhao, Q. Lin, H. Yao, Y. M. Zhang, T. B. Wei, Dyes Pigm. 2021, 186, 108949;
- 19dT. Xie, L. Yang, X. Sun, J. Jiang, X. Zhang, Y. Luo, G. Zhang, Chem. Commun. 2016, 52, 9383–9386.
- 20X. Zhu, Y. Jiang, D. Yang, L. Zhang, Y. Li, M. Liu, Chem. Sci. 2019, 10, 3873–3880.
Citing Literature
February 14, 2022
e202115748