Dense Packing of Acetylene in a Stable and Low-Cost Metal–Organic Framework for Efficient C2H2/CO2 Separation
Jiyan Pei
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
These authors contributed equally to this work.
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQuan-Li Qian
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Yu Yang
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Yuanjing Cui
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698 USA
Search for more papers by this authorCorresponding Author
Prof. Guodong Qian
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiyan Pei
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
These authors contributed equally to this work.
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQuan-Li Qian
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Yu Yang
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Yuanjing Cui
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698 USA
Search for more papers by this authorCorresponding Author
Prof. Guodong Qian
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorGraphical Abstract
Abstract
Porous materials for C2H2/CO2 separation mostly suffer from high regeneration energy, poor stability, or high cost that largely dampen their industrial implementation. A desired adsorbent should have an optimal balance between excellent separation performance, high stability, and low cost. We herein report a stable, low-cost, and easily scaled-up aluminum MOF (CAU-10-H) for highly efficient C2H2/CO2 separation. The suitable pore confinement in CAU-10-H can not only provide multipoint binding interactions with C2H2 but also enable the dense packing of C2H2 inside the pores. This material exhibits one of the highest C2H2 storage densities of 392 g L−1 and highly selective adsorption of C2H2 over CO2 at ambient conditions, achieved by a low C2H2 adsorption enthalpy (27 kJ mol−1). Breakthrough experiments confirm its exceptional separation performance for C2H2/CO2 mixtures, affording both large C2H2 uptake of 3.3 mmol g−1 and high separation factor of 3.4. CAU-10-H achieves the benchmark balance between separation performance, stability, and cost for C2H2/CO2 separation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202110820-sup-0001-misc_information.pdf8.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003.
10.1002/9783527619191 Google Scholar
- 2A. Granada, S. B. Karra, S. M. Senkan, Ind. Eng. Chem. Res. 1987, 26, 1901–1905.
- 3C. R. Reid, K. M. Thomas, J. Phys. Chem. B 2001, 105, 10619–10629.
- 4D. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 5
- 5aJ.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504;
- 5bK. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 2017, 46, 3402–3430;
- 5cH. Wang, Y. Liu, J. Li, Adv. Mater. 2020, 32, 2002603;
- 5dR.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chem 2020, 6, 337–363;
- 5eW.-G. Cui, T.-L. Hu, X.-H. Bu, Adv. Mater. 2020, 32, 1806445;
- 5fZ. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L. R. Redfern, S. Moribe, T. Islamoglu, D. A. Gómez-Gualdrón, T. Yildirim, J. F. Stoddart, O. K. Farha, Science 2020, 368, 297–303;
- 5gI. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans, S. Kaskel, Angew. Chem. Int. Ed. 2018, 57, 13780–13783; Angew. Chem. 2018, 130, 13976–13979;
- 5hR.-B. Lin, Z. Zhang, B. Chen, Acc. Chem. Res. 2021, 54, 3362–3376.
- 6
- 6aP.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193–1196;
- 6bZ. Zhang, S. B. Peh, Y. Wang, C. Kang, W. Fan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 18927–18932; Angew. Chem. 2020, 132, 19089–19094;
- 6cL. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8, 1233;
- 6dE. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610;
- 6eL. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446;
- 6fH.-G. Hao, Y.-F. Zhao, D.-M. Chen, J.-M. Yu, K. Tan, S. Ma, Y. Chabal, Z.-M. Zhang, J.-M. Dou, Z.-H. Xiao, G. Day, H.-C. Zhou, T.-B. Lu, Angew. Chem. Int. Ed. 2018, 57, 16067–16071; Angew. Chem. 2018, 130, 16299–16303;
- 6gR. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241.
- 7
- 7aD.-D. Zhou, P. Chen, C. Wang, S.-S. Wang, Y. Du, H. Yan, Z.-M. Ye, C.-T. He, R.-K. Huang, Z.-W. Mo, N.-Y. Huang, J.-P. Zhang, Nat. Mater. 2019, 18, 994–998;
- 7bH. Zeng, M. Xie, T. Wang, R.-J. Wei, X.-J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548;
- 7cA. Cadiau, Y. Belmabkhout, K. Adil, P. M. Bhatt, R. S. Pillai, A. Shkurenko, C. Martineau-Corcos, G. Maurin, M. Eddaoudi, Science 2017, 356, 731–735;
- 7dZ. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 17198–17204; Angew. Chem. 2021, 133, 17335–17341;
- 7eO. T. Qazvini, R. Babarao, S. G. Telfer, Nat. Commun. 2021, 12, 197;
- 7fY. Gu, J.-J. Zheng, K.-i. Otake, M. Shivanna, S. Sakaki, H. Yoshino, M. Ohba, S. Kawaguchi, Y. Wang, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2021, 60, 11688–11694; Angew. Chem. 2021, 133, 11794–11800;
- 7gY. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2020, 59, 19027–19030; Angew. Chem. 2020, 132, 19189–19192.
- 8Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136.
- 9F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O'Keeffe, L. Wang, M. Luo, R.-B. Lin, B. Chen, J. Am. Chem. Soc. 2016, 138, 5678–5684.
- 10S. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. Int. Ed. 2010, 49, 4615–4618; Angew. Chem. 2010, 122, 4719–4722.
- 11Y.-P. Li, Y. Wang, Y.-Y. Xue, H.-P. Li, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729.
- 12L. Liu, Z. Yao, Y. Ye, Y. Yang, Q. Lin, Z. Zhang, M. O'Keeffe, S. Xiang, J. Am. Chem. Soc. 2020, 142, 9258–9266.
- 13Y.-Y. Xue, X.-Y. Bai, J. Zhang, Y. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Angew. Chem. Int. Ed. 2021, 60, 10122–10128; Angew. Chem. 2021, 133, 10210–10216.
- 14
- 14aF. Moreau, I. da Silva, N. H. A. Smail, T. L. Easun, M. Savage, H. G. W. Godfrey, S. F. Parker, P. Manuel, S. Yang, M. Schröder, Nat. Commun. 2017, 8, 14085;
- 14bZ. Di, C. Liu, J. Pang, C. Chen, F. Hu, D. Yuan, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 10828–10832; Angew. Chem. 2021, 133, 10923–10927;
- 14cH. Li, C. Liu, C. Chen, Z. Di, D. Yuan, J. Pang, W. Wei, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 7547–7552; Angew. Chem. 2021, 133, 7625–7630;
- 14dW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737.
- 15L. Zhang, K. Jiang, L. Yang, L. Li, E. Hu, L. Yang, K. Shao, H. Xing, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 15995–16002; Angew. Chem. 2021, 133, 16131–16138.
- 16Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141.
- 17Z. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288; Angew. Chem. 2021, 133, 5343–5348.
- 18J. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 7869–7873; Angew. Chem. 2018, 130, 7995–7999.
- 19J. Gao, X. Qian, R.-B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 4396–4400; Angew. Chem. 2020, 132, 4426–4430.
- 20R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028.
- 21J. Pei, K. Shao, J.-X. Wang, H.-M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, Adv. Mater. 2020, 32, 1908275.
- 22H. S. Scott, M. Shivanna, A. Bajpai, D. G. Madden, K.-J. Chen, T. Pham, K. A. Forrest, A. Hogan, B. Space, J. J. Perry IV, M. J. Zaworotko, ACS Appl. Mater. Interfaces 2017, 9, 33395–33400.
- 23H. Zeng, M. Xie, Y.-L. Huang, Y. Zhao, X.-J. Xie, J.-P. Bai, M.-Y. Wan, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519; Angew. Chem. 2019, 131, 8603–8607.
- 24K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry IV, M. J. Zaworotko, Chem 2016, 1, 753–765.
- 25
- 25aL. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, X. Zhao, Angew. Chem. Int. Ed. 2021, 60, 4570–4574; Angew. Chem. 2021, 133, 4620–4624;
- 25bY. Zhang, J. Hu, R. Krishna, L. Wang, L. Yang, X. Cui, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2020, 59, 17664–17669; Angew. Chem. 2020, 132, 17817–17822;
- 25cM. Shivanna, K.-i. Otake, B.-Q. Song, L. M. Wyk, Q.-Y. Yang, N. Kumar, W. K. Feldmann, T. Pham, S. Suepaul, B. Space, L. J. Barbour, S. Kitagawa, M. J. Zaworotko, Angew. Chem. Int. Ed. 2021, 60, 20383–20390; Angew. Chem. 2021, 133, 20546–20553.
- 26X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141–144.
- 27S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang, M. Schröder, Nat. Chem. 2015, 7, 121–129.
- 28S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Nat. Commun. 2012, 3, 954.
- 29N. P. Revsbech, J. Sørensen, Denitrification in Soil and Sediment, Plenum Press, New York, 1990.
10.1007/978-1-4757-9969-9 Google Scholar
- 30
- 30aI. A. Ibarra, P. A. Bayliss, E. Pérez, S. Yang, A. J. Blake, H. Nowell, D. R. Allan, M. Poliakoff, M. Schröder, Green Chem. 2012, 14, 117–122;
- 30bP. A. Bayliss, I. A. Ibarra, E. Pérez, S. Yang, C. C. Tang, M. Poliakoff, M. Schröder, Green Chem. 2014, 16, 3796–3802;
- 30cB. Saccoccia, A. M. Bohnsack, N. W. Waggoner, K. H. Cho, J. S. Lee, D.-Y. Hong, V. M. Lynch, J.-S. Chang, S. M. Humphrey, Angew. Chem. Int. Ed. 2015, 54, 5394–5398; Angew. Chem. 2015, 127, 5484–5488;
- 30dP. Silva, S. M. F. Vilela, J. P. C. Tomébc, F. A. Almeida Paz, Chem. Soc. Rev. 2015, 44, 6774–6803.
- 31
- 31aT. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 2004, 10, 1373–1382;
- 31bC. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828–1831;
- 31cD. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 13308–13318;
- 31d“Metal-Organic Frameworks: Aluminium-Based Frameworks”: N. Stock, Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, Hoboken, 2014;
- 31eA. Samokhvalov, Coord. Chem. Rev. 2018, 374, 236–253.
- 32
- 32aP. Silva, S. M. F. Vilela, J. P. C. Tome, F. A. A. Paz, Chem. Soc. Rev. 2015, 44, 6774–6803;
- 32bN. Tannert, C. Jansen, S. Nießing, C. Janiak, Dalton Trans. 2019, 48, 2967–2976;
- 32cM. Gaab, N. Trukhan, S. Maurer, R. Gummaraju, U. Müller, Microporous Mesoporous Mater. 2012, 157, 131–136.
- 33
- 33aH. Reinsch, M. A. van der Veen, B. Gil, B. Marszalek, T. Verbiest, D. de Vos, N. Stock, Chem. Mater. 2013, 25, 17–26;
- 33bD. Fröhlich, E. Pantatosaki, P. D. Kolokathis, K. Markey, H. Reinsch, M. Baumgartner, M. A. van der Veen, D. E. D. Vos, N. Stock, G. K. Papadopoulos, S. K. Henninger, C. Janiak, J. Mater. Chem. A 2016, 4, 11859–11869;
- 33cD. Lenzen, P. Bendix, H. Reinsch, D. Fröhlich, H. Kummer, M. Möllers, P. P. C. Hügenell, R. Gläser, S. Henninger, N. Stock, Adv. Mater. 2018, 30, 1705869;
- 33dJ. A. Zárate, E. Domínguez-Ojeda, E. Sánchez-González, E. Martínez-Ahumada, V. B. López-Cervantes, D. R. Williams, V. Martis, I. A. Ibarra, J. Alejandre, Dalton Trans. 2020, 49, 9203–9207.
- 34O. T. Qazvini, R. Babarao, Z.-L. Shi, Y.-B. Zhang, S. G. Telfer, J. Am. Chem. Soc. 2019, 141, 5014–5020.