Tuning the Circular Dichroism and Circular Polarized Luminescence Intensities of Chiral 2D Hybrid Organic–Inorganic Perovskites through Halogenation of the Organic Ions
Jin-Tai Lin
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorDeng-Gao Chen
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorLan-Sheng Yang
Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan
Search for more papers by this authorTai-Chun Lin
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYi-Hung Liu
Instrumentation Center, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yu-Chiang Chao
Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan
Search for more papers by this authorCorresponding Author
Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Ching-Wen Chiu
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorJin-Tai Lin
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorDeng-Gao Chen
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally to this work.
Search for more papers by this authorLan-Sheng Yang
Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan
Search for more papers by this authorTai-Chun Lin
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYi-Hung Liu
Instrumentation Center, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Yu-Chiang Chao
Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan
Search for more papers by this authorCorresponding Author
Pi-Tai Chou
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Ching-Wen Chiu
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorGraphical Abstract
Through the incorporation of Cl-substituted chiral organic cations, the chiroptical properties of 2D chiral perovskites can be significantly enhanced. The observed circular dichroism and circular polarized luminescence intensities are found to be associated with the d-spacing of hybrid organic–inorganic perovskites and the strength of the halogen–halogen interaction within the system.
Abstract
Through the incorporation of various halogen-substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic–inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl-substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F-substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d-spacing between inorganic layers and the halogen–halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2PbI4>(BrMBA)2PbI4>(IMBA)2PbI4>(MBA)2PbI4>(FMBA)2PbI4.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202107239-sup-0001-cif.zip958.8 KB | Supporting Information |
anie202107239-sup-0001-misc_information.pdf6.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 2
- 2aC. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, A. P. Ramirez, Science 2001, 293, 673–676;
- 2bJ.-T. Lin, C.-C. Liao, C.-S. Hsu, D.-G. Chen, H.-M. Chen, M.-K. Tsai, P.-T. Chou, C.-W. Chiu, J. Am. Chem. Soc. 2019, 141, 10324–10330.
- 3
- 3aJ.-T. Lin, D.-G. Chen, C.-H. Wu, C.-S. Hsu, C.-Y. Chien, H.-M. Chen, P.-T. Chou, C.-W. Chiu, Angew. Chem. Int. Ed. 2021, 60, 7866–7872; Angew. Chem. 2021, 133, 7945–7951;
- 3bH. Huang, J. Raith, S. V. Kershaw, S. Kalytchuk, O. Tomanec, L. Jing, A. S. Susha, R. Zboril, A. L. Rogach, Nat. Commun. 2017, 8, 996;
- 3cM. R. Filip, G. E. Eperon, H. J. Snaith, F. Giustino, Nat. Commun. 2014, 5, 5757.
- 4
- 4aY. Dou, M. Wang, J. Zhang, H. Xu, B. Hu, Adv. Funct. Mater. 2020, 30, 2003476;
- 4bM. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506–514;
- 4cJ.-T. Lin, T.-C. Chu, D.-G. Chen, Z.-X. Huang, H.-C. Chen, C.-S. Li, C.-I. Wu, P.-T. Chou, C.-W. Chiu, H. M. Chen, ACS Appl. Energy Mater. 2021, 4, 2041–2048.
- 5
- 5aC. Bi, Z. Yao, X. Sun, X. Wei, J. Wang, J. Tian, Adv. Mater. 2021, 33, 2006722;
- 5bY. He, J. Yan, L. Xu, B. Zhang, Q. Cheng, Y. Cao, J. Zhang, C. Tao, Y. Wei, K. Wen, Z. Kuang, G. M. Chow, Z. Shen, Q. Peng, W. Huang, J. Wang, Adv. Mater. 2021, 33, 2006302;
- 5cJ. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162–7167;
- 5dZ. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, Nat. Photonics 2017, 11, 108–115;
- 5eY. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Nature 2018, 562, 249–253;
- 5fZ.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687–692.
- 6
- 6aN. D. Canicoba, N. Zagni, F. Liu, G. McCuistian, K. Fernando, H. Bellezza, B. Traoré, R. Rogel, H. Tsai, L. Le Brizoual, W. Nie, J. J. Crochet, S. Tretiak, C. Katan, J. Even, M. G. Kanatzidis, B. W. Alphenaar, J.-C. Blancon, M. A. Alam, A. D. Mohite, ACS Mater. Lett. 2019, 1, 633–640;
- 6bW. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M. L. Tietze, U. Buttner, X. Wang, Z. Wang, M. N. Hedhili, C. Guo, T. Wu, A. Amassian, Nat. Commun. 2018, 9, 5354;
- 6cS. P. Senanayak, M. Abdi-Jalebi, V. S. Kamboj, R. Carey, R. Shivanna, T. Tian, G. Schweicher, J. Wang, N. Giesbrecht, D. Di Nuzzo, H. E. Beere, P. Docampo, D. A. Ritchie, D. Fairen-Jimenez, R. H. Friend, H. Sirringhaus, Sci. Adv. 2020, 6, eaaz4948.
- 7
- 7aJ. Even, L. Pedesseau, J.-M. Jancu, C. Katan, J. Phys. Chem. Lett. 2013, 4, 2999–3005;
- 7bA. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, Nano Lett. 2014, 14, 3608–3616.
- 8
- 8aL. Zhang, X. Zhang, G. Lu, J. Phys. Chem. Lett. 2020, 11, 6982–6989;
- 8bY. Zhai, S. Baniya, C. Zhang, J. Li, P. Haney, C.-X. Sheng, E. Ehrenfreund, Z. V. Vardeny, Sci. Adv. 2017, 3, e1700704.
- 9
- 9aY. Song, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H. M. Meyer, M. Chi, C. Ma, B. G. Sumpter, A. J. Rondinone, ChemistrySelect 2016, 1, 1–8;
- 9bG. Long, C. Jiang, R. Sabatini, Z. Yang, M. Wei, L. N. Quan, Q. Liang, A. Rasmita, M. Askerka, G. Walters, X. Gong, J. Xing, X. Wen, R. Quintero-Bermudez, H. Yuan, G. Xing, X. R. Wang, D. Song, O. Voznyy, M. Zhang, S. Hoogland, W. Gao, Q. Xiong, E. H. Sargent, Nat. Photonics 2018, 12, 528–533.
- 10
- 10aR. Naaman, Y. Paltiel, D. H. Waldeck, Acc. Chem. Res. 2020, 53, 2659–2667;
- 10bR. Naaman, Y. Paltiel, D. H. Waldeck, Nat. Rev. Chem. 2019, 3, 250–260.
- 11G. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X. Liu, E. H. Sargent, W. Gao, Nat. Rev. Mater. 2020, 5, 423–439.
- 12R. C. Hilborn, Am. J. Phys. 1982, 50, 982–986.
- 13S. Han, M. Li, Y. Liu, W. Guo, M.-C. Hong, Z. Sun, J. Luo, Nat. Commun. 2021, 12, 284.
- 14
- 14aL. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu, C. Qin, J. Yang, H. Dai, M. Yuan, Angew. Chem. Int. Ed. 2020, 59, 6442–6450; Angew. Chem. 2020, 132, 6504–6512;
- 14bJ. Ma, C. Fang, C. Chen, L. Jin, J. Wang, S. Wang, J. Tang, D. Li, ACS Nano 2019, 13, 3659–3665;
- 14cH. Lu, C. Xiao, R. Song, T. Li, A. E. Maughan, A. Levin, R. Brunecky, J. J. Berry, D. B. Mitzi, V. Blum, M. C. Beard, J. Am. Chem. Soc. 2020, 142, 13030–13040;
- 14dD. Li, X. Liu, W. Wu, Y. Peng, S. Zhao, L. Li, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2021, 60, 8415–8418; Angew. Chem. 2021, 133, 8496–8499;
- 14eY.-L. Zeng, X.-Q. Huang, C.-R. Huang, H. Zhang, F. Wang, Z.-X. Wang, Angew. Chem. Int. Ed. 2021, 60, 10730–10735; Angew. Chem. 2021, 133, 10825–10830;
- 14fY. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu, Small 2019, 15, 1902237.
- 15D. G. Billing, A. Lemmerer, CrystEngComm 2006, 8, 686–695.
- 16J. Ahn, E. Lee, J. Tan, W. Yang, B. Kim, J. Moon, Mater. Horiz. 2017, 4, 851–856.
- 17J. Ahn, S. Ma, J.-Y. Kim, J. Kyhm, W. Yang, J. A. Lim, N. A. Kotov, J. Moon, J. Am. Chem. Soc. 2020, 142, 4206–4212.
- 18B. Sun, X.-F. Liu, X.-Y. Li, Y. Zhang, X. Shao, D. Yang, H.-L. Zhang, Chem. Mater. 2020, 32, 8914–8920.
- 19R. Wang, S. Hu, X. Yang, X. Yan, H. Li, C. Sheng, J. Mater. Chem. C 2018, 6, 2989–2995.
- 20
- 20aN. Berova, K. Nakanishi, R. Woody, Circular Dichroism. Principles and Applications, 2nd ed., Wiley, Hoboken, 2000;
- 20bJ. A. Schellman, Chem. Rev. 1975, 75, 323–331;
- 20cB. R. Baker, R. L. Garrell, Faraday Discuss. 2004, 126, 209–222.
- 21Y. Nagata, T. Mori, Front. Chem. 2020, 8, 00448.
- 22Y. Nakai, T. Mori, Y. Inoue, J. Phys. Chem. A 2012, 116, 7372–7385.
- 23D. B. Mitzi, C. D. Dimitrakopoulos, L. L. Kosbar, Chem. Mater. 2001, 13, 3728–3740.
- 24K. Tutaj, R. Szlazak, J. Starzyk, P. Wasko, W. Grudzinski, W. I. Gruszecki, R. Luchowski, J. Photochem. Photobiol. B 2015, 151, 83–88.
- 25D. Di Nuzzo, L. Cui, J. L. Greenfield, B. Zhao, R. H. Friend, S. C. J. Meskers, ACS Nano 2020, 14, 7610–7616.
- 26M. S. Alias, I. Dursun, M. I. Saidaminov, E. M. Diallo, P. Mishra, T. K. Ng, O. M. Bakr, B. S. Ooi, Opt. Express 2016, 24, 16586–16594.
- 27R. R. Gould, R. Hoffmann, J. Am. Chem. Soc. 1970, 92, 1813–1818.
- 28C. Zhou, Y. Chu, L. Ma, Y. Zhong, C. Wang, Y. Liu, H. Zhang, B. Wang, X. Feng, X. Yu, X. Zhang, Y. Sun, X. Li, G. Zhao, Phys. Chem. Chem. Phys. 2020, 22, 17299–17305.