Surface-Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual-Catalytic Center in Water Oxidation
Cejun Hu
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorYanfang Hu
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorChenghao Fan
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorLing Yang
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorYutong Zhang
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorHaixia Li
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Xie
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorCejun Hu
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorYanfang Hu
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorChenghao Fan
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorLing Yang
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorYutong Zhang
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorHaixia Li
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Xie
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071 China
Search for more papers by this authorDedicated to the 100th anniversary of Chemistry at Nankai University
Graphical Abstract
Bifunctional superstructures consisting of plasmonic Au core and catalytically active Ni3FeOx satellites were used to study the OER process on NiFe-based catalysts. The in situ spectroscopic results on interfacial reaction intermediates disclose the synergistic mechanism of the dual-metal-centered OER catalyst.
Abstract
NiFe-based electrocatalysts have attracted great interests due to the low price and high activity in oxygen evolution reaction (OER). However, the complex reaction mechanism of NiFe-catalyzed OER has not been fully explored yet. Detection of intermediate species can bridge the gap between OER performances and catalyst component/structure properties. Here, we performed label-free surface-enhanced Raman spectroscopic (SERS) monitoring of interfacial OER process on Ni3FeOx nanoparticles (NPs) in alkaline medium. By using bifunctional Au@Ni3FeOx core-satellite superstructures as Raman signal enhancer, we found direct spectroscopic evidence of intermediate O-O− species. According to the SERS results, Fe atoms are the catalytic sites for the initial OH− to O-O− oxidation. The O-O− species adsorbed across neighboring Fe and Ni sites experiences further oxidation caused by electron transfer to NiIII and eventually forms O2 product.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202103888-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aV. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57–69;
- 1bI. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. J. Mayrhofer, Angew. Chem. Int. Ed. 2014, 53, 102–121; Angew. Chem. 2014, 126, 104–124;
- 1cT. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 2017, 7, 1601275.
- 2
- 2aY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086;
- 2bJ. Zhang, Q. Zhang, X. Feng, Adv. Mater. 2019, 31, 1808167.
- 3
- 3aR. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, B. Liu, Adv. Mater. 2019, 31, 1903909;
- 3bJ. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, J. F. Li, Nat. Energy 2019, 4, 60–67.
- 4
- 4aP. Lettenmeier, L. Wang, U. Golla Schindler, P. Gazdzicki, N. A. Cañas, M. Handl, R. Hiesgen, S. S. Hosseiny, A. S. Gago, K. A. Friedrich, Angew. Chem. Int. Ed. 2016, 55, 742–746; Angew. Chem. 2016, 128, 752–756;
- 4bT. Zhang, S. Wang, Acta Phys. Chim. Sin. 2021, 37, 2012052.
- 5Y. Peng, H. Hajiyani, R. Pentcheva, ACS Catal. 2021, 11, 5601–5613.
- 6
- 6aB. S. Yeo, A. T. Bell, J. Phys. Chem. C 2012, 116, 8394–8400;
- 6bD. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun, B. Liu, Angew. Chem. Int. Ed. 2019, 58, 736–740; Angew. Chem. 2019, 131, 746–750;
- 6cB. J. Trześniewski, O. Diaz Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. M. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112–15121.
- 7D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305–1313.
- 8S. Lee, L. Bai, X. Hu, Angew. Chem. Int. Ed. 2020, 59, 8072–8077; Angew. Chem. 2020, 132, 8149–8154.
- 9
- 9aE. Fabbri, A. Habereder, K. Waltar, R. Kötz, T. J. Schmidt, Catal. Sci. Technol. 2014, 4, 3800–3821;
- 9bH. B. Tao, Y. Xu, X. Huang, J. Chen, L. Pei, J. Zhang, J. G. Chen, B. Liu, Joule 2019, 3, 1498–1509;
- 9cY. Lin, Z. Liu, L. Yu, G. R. Zhang, H. Tan, K. H. Wu, F. Song, A. K. Mechler, P. P. M. Schleker, Q. Lu, B. Zhang, S. Heumann, Angew. Chem. Int. Ed. 2021, 60, 3299–3306; Angew. Chem. 2021, 133, 3336–3343.
- 10O. Diaz-Morales, D. Ferrus-Suspedra, M. T. M. Koper, Chem. Sci. 2016, 7, 2639–2645.
- 11S. Lee, K. Banjac, M. Lingenfelder, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 10295–10299; Angew. Chem. 2019, 131, 10401–10405.
- 12
- 12aM. B. Stevens, C. D. M. Trang, L. J. Enman, J. Deng, S. W. Boettcher, J. Am. Chem. Soc. 2017, 139, 11361–11364;
- 12bX. Bo, R. K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, Y. Du, C. Zhao, Energy Environ. Sci. 2020, 13, 4225–4237.
- 13M. Görlin, P. Chernev, J. Ferreira de Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2016, 138, 5603–5614.
- 14
- 14aH. Zhang, X. G. Zhang, J. Wei, C. Wang, S. Chen, H. L. Sun, Y. H. Wang, B. H. Chen, Z. L. Yang, D. Y. Wu, J. F. Li, Z. Q. Tian, J. Am. Chem. Soc. 2017, 139, 10339–10346;
- 14bJ. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, Z. Q. Tian, Chem. Rev. 2017, 117, 5002–5069;
- 14cM. Moskovits, J. Raman Spectrosc. 2005, 36, 485–496;
- 14dK. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett. 1997, 78, 1667–1670.
- 15
- 15aY. Qi, V. Brasiliense, T. W. Ueltschi, J. E. Park, M. R. Wasielewski, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2020, 142, 13120–13129;
- 15bT. Jiang, G. Chen, X. Tian, S. Tang, J. Zhou, Y. Feng, H. Chen, J. Am. Chem. Soc. 2018, 140, 15560–15563;
- 15cS. E. Bae, K. L. Stewart, A. A. Gewirth, J. Am. Chem. Soc. 2007, 129, 10171–10180.
- 16
- 16aJ. C. Dong, M. Su, V. Briega Martos, L. Li, J. B. Le, P. Radjenovic, X. S. Zhou, J. M. Feliu, Z. Q. Tian, J. F. Li, J. Am. Chem. Soc. 2020, 142, 715–719.
- 17
- 17aW. Xie, R. Grzeschik, S. Schlücker, Angew. Chem. Int. Ed. 2016, 55, 13729–13733; Angew. Chem. 2016, 128, 13933–13937;
- 17bK. Zhang, L. Yang, Y. Hu, C. Fan, Y. Zhao, L. Bai, Y. Li, F. Shi, J. Liu, W. Xie, Angew. Chem. Int. Ed. 2020, 59, 18003–18009; Angew. Chem. 2020, 132, 18159–18165;
- 17cY. Zhao, L. Du, H. Li, W. Xie, J. Chen, J. Phys. Chem. Lett. 2019, 10, 1286–1291;
- 17dY. Li, Y. Hu, F. Shi, H. Li, W. Xie, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 9049–9053; Angew. Chem. 2019, 131, 9147–9151;
- 17eX. Chen, M. Liang, J. Xu, H. Sun, C. Wang, J. Wei, H. Zhang, W. Yang, Z. Yang, J. Sun, Z. Q. Tian, J. F. Li, Nanoscale 2020, 12, 5341–5346.
- 18J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian, Nature 2010, 464, 392–395.
- 19
- 19aG. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Adv. Mater. 2018, 30, 1706279;
- 19bY. Shi, Y. Yu, Y. Liang, Y. Du, B. Zhang, Angew. Chem. Int. Ed. 2019, 58, 3769–3773; Angew. Chem. 2019, 131, 3809–3813.
- 20
- 20aY. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, Adv. Mater. 2017, 29, 1700017;
- 20bZ. Qiu, C. W. Tai, G. A. Niklasson, T. Edvinsson, Energy Environ. Sci. 2019, 12, 572–581.
- 21
- 21aY. Yang, Y. Wang, H.-L. He, W. Yan, L. Fang, Y.-B. Zhang, Y. Qin, R. Long, X.-M. Zhang, X. Fan, ACS Nano 2020, 14, 4925–4937;
- 21bX. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, J. Qiu, Adv. Energy Mater. 2017, 7, 1602148.
- 22
- 22aL. Bai, S. Lee, X. Hu, Angew. Chem. Int. Ed. 2021, 60, 3095–3103; Angew. Chem. 2021, 133, 3132–3140;
- 22bZ. Yan, H. Sun, X. Chen, H. Liu, Y. Zhao, H. Li, W. Xie, F. Cheng, J. Chen, Nat. Commun. 2018, 9, 2373.
- 23
- 23aS. A. Hunter-Saphir, J. A. Creighton, J. Raman Spectrosc. 1998, 29, 417–419;
- 23bX. Li, A. A. Gewirth, J. Am. Chem. Soc. 2005, 127, 5252–5260.
- 24H. Xiao, H. Shin, W. A. Goddard, Proc. Natl. Acad. Sci. USA 2018, 115, 5872–5877.
- 25
- 25aM. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329–12337;
- 25bS. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, A. T. Bell, J. Phys. Chem. C 2015, 119, 7243–7254.
- 26
- 26aY. F. Huang, P. J. Kooyman, M. T. M. Koper, Nat. Commun. 2016, 7, 12440;
- 26bA. Panchenko, M. Koper, T. Shubina, S. Mitchell, E. Roduner, J. Electrochem. Soc. 2004, 151, A2016.