Heterometallic Actinide-Containing Photoresponsive Metal-Organic Frameworks: Dynamic and Static Tuning of Electronic Properties
Corey R. Martin
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorGabrielle A. Leith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Preecha Kittikhunnatham
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorKyoung Chul Park
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Otega A. Ejegbavwo
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorAbhijai Mathur
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorCameron R. Callahan
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorShelby L. Desmond
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorMyles R. Keener
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorFiaz Ahmed
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Shubham Pandey
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, 80401 USA
Search for more papers by this authorDr. Mark D. Smith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorProf. Dr. Simon R. Phillpot
Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611 USA
Search for more papers by this authorProf. Dr. Andrew B. Greytak
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Natalia B. Shustova
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorCorey R. Martin
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorGabrielle A. Leith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Preecha Kittikhunnatham
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorKyoung Chul Park
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Otega A. Ejegbavwo
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorAbhijai Mathur
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorCameron R. Callahan
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorShelby L. Desmond
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorMyles R. Keener
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorFiaz Ahmed
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorDr. Shubham Pandey
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, 80401 USA
Search for more papers by this authorDr. Mark D. Smith
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorProf. Dr. Simon R. Phillpot
Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611 USA
Search for more papers by this authorProf. Dr. Andrew B. Greytak
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Natalia B. Shustova
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 USA
Search for more papers by this authorGraphical Abstract
The merging of heterometallic actinide-containing metal-organic frameworks and photochromic moieties allowed for dynamic tailoring of electronics properties as a function of excitation wavelength. Visualization of material photoswitchable behavior was demonstrated by construction of the first photochromic MOF-based field-effect transistor.
Abstract
Acquiring fundamental knowledge of properties of actinide-based materials is a necessary step to create new possibilities for addressing the current challenges in the nuclear energy and nuclear waste sectors. In this report, we established a photophysics–electronics correlation for actinide-containing metal-organic frameworks (An-MOFs) as a function of excitation wavelength, for the first time. A stepwise approach for dynamically modulating electronic properties was applied for the first time towards actinide-based heterometallic MOFs through integration of photochromic linkers. Optical cycling, modeling of density of states near the Fermi edge, conductivity measurements, and photoisomerization kinetics were employed to shed light on the process of tailoring optoelectronic properties of An-MOFs. Furthermore, the first photochromic MOF-based field-effect transistor, in which the field-effect response could be changed through light exposure, was constructed. As a demonstration, the change in current upon light exposure was sufficient to operate a two-LED fail-safe indicator circuit.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202016826-sup-0001-misc_information.pdf21.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Chen, P. Li, X. Zhang, M. R. Mian, X. Wang, P. Li, Z. Liu, M. O'Keeffe, J. F. Stoddart, O. K. Farha, Nano Res. 2021, 14, 376–380.
- 2L. Zhu, D. Sheng, C. Xu, X. Dai, M. A. Silver, J. Li, P. Li, Y. Wang, Y. Wang, L. Chen, C. Xiao, J. Chen, R. Zhou, C. Zhang, O. K. Farha, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, J. Am. Chem. Soc. 2017, 139, 14873–14876.
- 3J. Amoroso, J. Marra, S. D. Conradson, M. Tang, K. Brinkman, J. Alloys Compd. 2014, 584, 590–599.
- 4D. Li, N. B. Shustova, C. R. Martin, K. Taylor-Pashow, J. C. Seaman, D. I. Kaplan, J. W. Amoroso, R. Chernikov, J. Environ. Radioact. 2020, 222, 106372.
- 5C. Delchet, A. Tokarev, X. Dumail, G. Toquer, Y. Barré, Y. Guari, C. Guerin, J. Larionova, A. Grandjean, RSC Adv. 2012, 2, 5707–5716.
- 6H. Yang, M. Luo, L. Luo, H. Wang, D. Hu, J. Lin, X. Wang, Y. Wang, S. Wang, X. Bu, P. Feng, T. Wu, Chem. Mater. 2016, 28, 8774–8780.
- 7D. Sheng, L. Zhu, X. Dai, C. Xu, P. Li, C. I. Pearce, C. Xiao, J. Chen, R. Zhou, T. Duan, O. K. Farha, Z. Chai, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 4968–4972; Angew. Chem. 2019, 131, 5022–5026.
- 8H.-C. zur Loye, T. Besmann, J. Amoroso, K. Brinkman, A. Grandjean, C. H. Henager, S. Hu, S. T. Misture, S. R. Phillpot, N. B. Shustova, H. Wang, R. J. Koch, G. Morrison, E. Dolgopolova, Chem. Mater. 2018, 30, 4475–4488.
- 9D. Li, J. C. Seaman, S. E. Hunyadi Murph, D. I. Kaplan, K. Taylor-Pashow, R. Feng, H. Chang, M. Tandukar, J. Hazard. Mater. 2019, 374, 177–185.
- 10P. Makowski, X. Deschanels, A. Grandjean, D. Meyer, G. Toquer, F. Goettmann, New J. Chem. 2012, 36, 531–541.
- 11W. Li, S. Watzele, H. A. El-Sayed, Y. Liang, G. Kieslich, A. S. Bandarenka, K. Rodewald, B. Rieger, R. A. Fischer, J. Am. Chem. Soc. 2019, 141, 5926–5933.
- 12H. Choi, A. W. Peters, H. Noh, L. C. Gallington, A. E. Platero-Prats, M. R. DeStefano, M. Rimoldi, S. Goswami, K. W. Chapman, O. K. Farha, J. T. Hupp, ACS Appl. Energy Mater. 2019, 2, 8695–8700.
- 13C. Mao, Y. Wang, W. Jiao, X. Chen, Q. Lin, M. Deng, Y. Ling, Y. Zhou, X. Bu, P. Feng, Langmuir 2017, 33, 13634–13639.
- 14Y.-P. Wu, G.-W. Xu, W.-W. Dong, J. Zhao, D.-S. Li, J. Zhang, X. Bu, Inorg. Chem. 2017, 56, 1402–1411.
- 15Y. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2020, 59, 19027–19030; Angew. Chem. 2020, 132, 19189–19192.
- 16M. Kalaj, J. M. Palomba, K. C. Bentz, S. M. Cohen, Chem. Commun. 2019, 55, 5367–5370.
- 17A. Gonzalez, E. S. Kengmana, M. V. Fonseca, G. G. D. Han, Mater. Today Adv. 2020, 6, 100058.
- 18A. K. Bohaty, M. R. Newton, I. Zharov, J. Porous Mater. 2010, 17, 465–473.
- 19W. J. Newsome, S. Ayad, J. Cordova, E. W. Reinheimer, A. D. Campiglia, J. K. Harper, K. Hanson, F. J. Uribe-Romo, J. Am. Chem. Soc. 2019, 141, 11298–11303.
- 20Y.-P. Wu, J.-W. Tian, S. Liu, B. Li, J. Zhao, L.-F. Ma, D.-S. Li, Y.-Q. Lan, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 12185–12189; Angew. Chem. 2019, 131, 12313–12317.
- 21Z. Zhou, S. Mukherjee, J. Warnan, W.-J. Li, S. Wannapaiboon, S. Hou, K. Rodewald, B. Rieger, P. G. Weidler, C. Wöll, R. A. Fischer, J. Mater. Chem. A 2020, 8, 25941–25950.
- 22C.-W. Kung, A. E. Platero-Prats, R. J. Drout, J. Kang, T. C. Wang, C. O. Audu, M. C. Hersam, K. W. Chapman, O. K. Farha, J. T. Hupp, ACS Appl. Mater. Interfaces 2018, 10, 30532–30540.
- 23S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin, H.-C. Zhou, J. Am. Chem. Soc. 2015, 137, 3177–3180.
- 24E. A. Dolgopolova, O. A. Ejegbavwo, C. R. Martin, M. D. Smith, W. Setyawan, S. G. Karakalos, C. H. Henager, H.-C. zur Loye, N. B. Shustova, J. Am. Chem. Soc. 2017, 139, 16852–16861.
- 25A. A. Berseneva, C. R. Martin, V. A. Galitskiy, O. A. Ejegbavwo, G. A. Leith, R. T. Ly, A. M. Rice, E. A. Dolgopolova, M. D. Smith, H.-C. zur Loye, D. P. DiPrete, J. W. Amoroso, N. B. Shustova, Inorg. Chem. 2020, 59, 179–183.
- 26S. Yuan, Y.-P. Chen, J.-S. Qin, W. Lu, L. Zou, Q. Zhang, X. Wang, X. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 8912–8919.
- 27E. A. Dolgopolova, A. J. Brandt, O. A. Ejegbavwo, A. S. Duke, T. D. Maddumapatabandi, R. P. Galhenage, B. W. Larson, O. G. Reid, S. C. Ammal, A. Heyden, M. Chandrashekhar, V. Stavila, D. A. Chen, N. B. Shustova, J. Am. Chem. Soc. 2017, 139, 5201–5209.
- 28O. A. Ejegbavwo, A. A. Berseneva, C. R. Martin, G. A. Leith, S. Pandey, A. J. Brandt, K. C. Park, A. Mathur, S. Farzandh, V. V. Klepov, B. J. Heiser, M. Chandrashekhar, S. G. Karakalos, M. D. Smith, S. R. Phillpot, S. Garashchuk, D. A. Chen, N. B. Shustova, Chem. Sci. 2020, 11, 7379–7389.
- 29S. Pandey, B. Demaske, O. A. Ejegbavwo, A. A. Berseneva, W. Setyawan, N. Shustova, S. R. Phillpot, Comput. Mater. Sci. 2020, 184, 109903.
- 30O. A. Ejegbavwo, C. R. Martin, O. A. Olorunfemi, G. A. Leith, R. T. Ly, A. M. Rice, E. A. Dolgopolova, M. D. Smith, S. G. Karakalos, N. Birkner, B. A. Powell, S. Pandey, R. J. Koch, S. T. Misture, H.-C. zur Loye, S. R. Phillpot, K. S. Brinkman, N. B. Shustova, J. Am. Chem. Soc. 2019, 141, 11628–11640.
- 31A. M. Rice, G. A. Leith, O. A. Ejegbavwo, E. A. Dolgopolova, N. B. Shustova, ACS Energy Lett. 2019, 4, 1938–1946.
- 32C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot, T. Loiseau, Chem. Commun. 2013, 49, 10320–10322.
- 33G. A. Leith, A. M. Rice, B. J. Yarbrough, A. A. Berseneva, R. T. Ly, C. N. Buck III, D. Chusov, A. J. Brandt, D. A. Chen, B. W. Lamm, M. Stefik, K. S. Stephenson, M. D. Smith, A. K. Vannucci, P. J. Pellechia, S. Garashchuk, N. B. Shustova, Angew. Chem. Int. Ed. 2020, 59, 6000–6006; Angew. Chem. 2020, 132, 6056–6062.
- 34A. L. Sutton, B. F. Abrahams, D. M. D'Alessandro, T. A. Hudson, R. Robson, P. M. Usov, CrystEngComm 2016, 18, 8906–8914.
- 35C. Schneider, M. Mendt, A. Pöppl, V. Crocellà, R. A. Fischer, ACS Appl. Mater. Interfaces 2020, 12, 1024–1035.
- 36K. J. Erickson, F. Léonard, V. Stavila, M. E. Foster, C. D. Spataru, R. E. Jones, B. M. Foley, P. E. Hopkins, M. D. Allendorf, A. A. Talin, Adv. Mater. 2015, 27, 3453–3459.
- 37M. D. Allendorf, M. E. Foster, F. Léonard, V. Stavila, P. L. Feng, F. P. Doty, K. Leong, E. Y. Ma, S. R. Johnston, A. A. Talin, J. Phys. Chem. Lett. 2015, 6, 1182–1195.
- 38C. H. Hendon, A. Walsh, Chem. Sci. 2015, 6, 3674–3683.
- 39G. Mehlana, S. A. Bourne, CrystEngComm 2017, 19, 4238–4259.
- 40S. Castellanos, F. Kapteijn, J. Gascon, CrystEngComm 2016, 18, 4006–4012.
- 41D. E. Williams, C. R. Martin, E. A. Dolgopolova, A. Swifton, D. C. Godfrey, O. A. Ejegbavwo, P. J. Pellechia, M. D. Smith, N. B. Shustova, J. Am. Chem. Soc. 2018, 140, 7611–7622.
- 42S. Yuan, L. Huang, Z. Huang, D. Sun, J.-S. Qin, L. Feng, J. Li, X. Zou, T. Cagin, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 4732–4738.
- 43E. A. Dolgopolova, V. A. Galitskiy, C. R. Martin, H. N. Gregory, B. J. Yarbrough, A. M. Rice, A. A. Berseneva, O. A. Ejegbavwo, K. S. Stephenson, P. Kittikhunnatham, S. G. Karakalos, M. D. Smith, A. B. Greytak, S. Garashchuk, N. B. Shustova, J. Am. Chem. Soc. 2019, 141, 5350–5358.
- 44R. Klajn, Chem. Soc. Rev. 2014, 43, 148–184.
- 45A. M. Rice, C. R. Martin, V. A. Galitskiy, A. A. Berseneva, G. A. Leith, N. B. Shustova, Chem. Rev. 2020, 120, 8790–8813.
- 46K. Healey, W. Liang, P. D. Southon, T. L. Church, D. M. D'Alessandro, J. Mater. Chem. A 2016, 4, 10816–10819.
- 47R. Ou, H. Zhang, V. X. Truong, L. Zhang, H. M. Hegab, L. Han, J. Hou, X. Zhang, A. Deletic, L. Jiang, G. P. Simon, H. Wang, Nat. Sustainability 2020, 3, 1052–1058.
- 48M.-Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, A. D. Q. Li, J. Am. Chem. Soc. 2006, 128, 4303–4309.
- 49A. G. Starikov, V. V. Butova, I. V. Ozhogin, A. V. Soldatov, J. Mol. Model. 2020, 26, 212.
- 50H. L. Nguyen, T. T. Vu, D. Le, T. L. H. Doan, V. Q. Nguyen, N. T. S. Phan, ACS Catal. 2017, 7, 338–342.
- 51C. F. Leong, C.-H. Wang, C. D. Ling, D. M. D′Alessandro, Polyhedron 2018, 154, 334–342.
- 52L. S. Xie, E. V. Alexandrov, G. Skorupskii, D. M. Proserpio, M. Dinca, Chem. Sci. 2019, 10, 8558–8565.
- 53S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 54H. Görner, Phys. Chem. Chem. Phys. 2001, 3, 416–423.
- 55X. Zhang, I. da Silva, R. Fazzi, A. M. Sheveleva, X. Han, B. F. Spencer, S. A. Sapchenko, F. Tuna, E. J. L. McInnes, M. Li, S. Yang, M. Schröder, Inorg. Chem. 2019, 58, 14145–14150.
- 56C. Schneider, D. Ukaj, R. Koerver, A. A. Talin, G. Kieslich, S. P. Pujari, H. Zuilhof, J. Janek, M. D. Allendorf, R. A. Fischer, Chem. Sci. 2018, 9, 7405–7412.
- 57X. Zhang, M. R. Saber, A. P. Prosvirin, J. H. Reibenspies, L. Sun, M. Ballesteros-Rivas, H. Zhao, K. R. Dunbar, Inorg. Chem. Front. 2015, 2, 904–911.
- 58M. Mahajan, S. K. Bhargava, A. P. O'Mullane, RSC Adv. 2013, 3, 4440–4446.
- 59S. Shimomura, R. Matsuda, T. Tsujino, T. Kawamura, S. Kitagawa, J. Am. Chem. Soc. 2006, 128, 16416–16417.
- 60T. C. T. Pham, S. Docao, I. C. Hwang, M. K. Song, D. Y. Choi, D. Moon, P. Oleynikov, K. B. Yoon, Energy Environ. Sci. 2016, 9, 1050–1062.
- 61Y.-Q. Hu, M.-Q. Li, Y. Wang, T. Zhang, P.-Q. Liao, Z. Zheng, X.-M. Chen, Y.-Z. Zheng, Chem. Eur. J. 2017, 23, 8409–8413.
- 62G.-P. Li, K. Zhang, H.-Y. Zhao, L. Hou, Y.-Y. Wang, ChemPlusChem 2017, 82, 716–720.
- 63J.-X. Lin, J. Liang, J.-F. Feng, B. Karadeniz, J. Lü, R. Cao, Inorg. Chem. Front. 2016, 3, 1393–1397.
- 64D.-W. Lim, M. Sadakiyo, H. Kitagawa, Chem. Sci. 2019, 10, 16–33.
- 65H. Wang, X. Liu, Z. Wang, H. Li, D. Li, Q. Meng, L. Chen, J. Phys. Chem. B 2006, 110, 5970–5974.
- 66Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120–4122.
- 67A. Sengupta, S. Datta, C. Su, T. S. Herng, J. Ding, J. J. Vittal, K. P. Loh, ACS Appl. Mater. Interfaces 2016, 8, 16154–16159.
- 68Y. Washino, K. Murata, M. Ashizawa, S. Kawauchi, T. Michinobu, Polym. J. 2011, 43, 364–369.
- 69A. P. O'Mullane, N. Fay, A. Nafady, A. M. Bond, J. Am. Chem. Soc. 2007, 129, 2066–2073.
- 70G. A. Bodkhe, M. A. Deshmukh, H. K. Patil, S. M. Shirsat, V. Srihari, K. K. Pandey, G. Panchal, D. M. Phase, A. Mulchandani, M. D. Shirsat, J. Phys. D 2019, 52, 335105.
- 71Deposition Numbers 2046008 (for Me2TNDA) and 2046009 (for H2TNDA) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.