Exploiting Ru-Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production
Correction(s) for this article
-
Corrigendum: Exploiting Ru-Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production
- Weidong Li,
- Yunxuan Zhao,
- Yuan Liu,
- Mingzi Sun,
- Geoffrey I. N. Waterhouse,
- Bolong Huang,
- Kan Zhang,
- Tierui Zhang,
- Siyu Lu,
- Volume 62Issue 36Angewandte Chemie International Edition
- First Published online: August 30, 2023
Dr. Weidong Li
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Material, Henan University of Engineering, Zhengzhou, 451191 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yunxuan Zhao
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuan Liu
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
Search for more papers by this authorMingzi Sun
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Search for more papers by this authorProf. Geoffrey I. N. Waterhouse
School of Chemical Sciences, The University of Auckland, Auckland, 1142 New Zealand
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Search for more papers by this authorProf. Kan Zhang
MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Tierui Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Siyu Lu
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
Search for more papers by this authorDr. Weidong Li
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Material, Henan University of Engineering, Zhengzhou, 451191 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yunxuan Zhao
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuan Liu
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
Search for more papers by this authorMingzi Sun
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Search for more papers by this authorProf. Geoffrey I. N. Waterhouse
School of Chemical Sciences, The University of Auckland, Auckland, 1142 New Zealand
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
Search for more papers by this authorProf. Kan Zhang
MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorProf. Tierui Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Siyu Lu
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000 China
Search for more papers by this authorGraphical Abstract
Ultra-low Ru induced CoRu nanoalloy lattice strain for robust hydrogen evolution reaction (HER) and hydrolysis of ammonia borane (AB) bifunctional hydrogen production is introduced. The CoRu0.5/CQDs displayed excellent stability during each reaction, including seven alternating cycles of HER and AB hydrolysis.
Abstract
Designing bifunctional catalysts capable of driving the electrochemical hydrogen evolution reaction (HER) and also H2 evolution via the hydrolysis of hydrogen storage materials such as ammonia borane (AB) is of considerable practical importance for future hydrogen economies. Herein, we systematically examined the effect of tensile lattice strain in CoRu nanoalloys supported on carbon quantum dots (CoRu/CQDs) on hydrogen generation by HER and AB hydrolysis. By varying the Ru content, the lattice parameters and Ru-induced lattice strain in the CoRu nanoalloys could be tuned. The CoRu0.5/CQDs catalyst with an ultra-low Ru content (1.33 wt.%) exhibited excellent catalytic activity for HER (η=18 mV at 10 mA cm−2 in 1 M KOH) and extraordinary activity for the hydrolysis of AB with a turnover frequency of 3255.4 mol
mol−1(Ru) min−1 or 814.7 mol
mol−1(cat) min−1 at 298 K, respectively, representing one of the best activities yet reported for AB hydrolysis over a ruthenium alloy catalyst. Moreover, the CoRu0.5/CQDs catalyst displayed excellent stability during each reaction, including seven alternating cycles of HER and AB hydrolysis. Theoretical calculations revealed that the remarkable catalytic performance of CoRu0.5/CQDs resulted from the optimal alloy electronic structure realized by incorporating small amounts of Ru, which enabled fast interfacial electron transfer to intermediates, thus benefitting H2 evolution kinetics. Results support the development of new and improved catalysts HER and AB hydrolysis.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202013985-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294–303.
- 2Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, 1256.
- 3B. Liu, S. Feng, L. Yang, C. Li, Z. Luo, T. Wang, J. Gong, Energy Environ. Sci. 2020, 13, 221–228.
- 4T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W. B. Hu, X. W. Du, K. Davey, S. Z. Qiao, Adv. Mater. 2019, 31, 1807771.
- 5J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441–446.
- 6Z. Peng, H. Wang, L. Zhou, Y. Wang, J. Gao, G. Liu, S. A. T. Redfern, X. Feng, S. Lu, B. Li, Z. Liu, J. Mater. Chem. A 2019, 7, 6676–6685.
- 7H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326.
- 8Y. Y. Ma, C. X. Wu, X. J. Feng, H. Q. Tan, L. K. Yan, Y. Liu, Z. H. Kang, E. B. Wang, Y. G. Li, Energy Environ. Sci. 2017, 10, 788–798.
- 9X. Zhang, Y. Zhao, X. Jia, Y. Zhao, L. Shang, Q. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater. 2018, 8, 1702780.
- 10F. Fu, C. Wang, Q. Wang, A. M. Martinez-Villacorta, A. Escobar, H. Chong, X. Wang, S. Moya, L. Salmon, E. Fouquet, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2018, 140, 10034–10042.
- 11Q. Wang, F. Fu, S. Yang, M. Martinez Moro, M. A. Ramirez, S. Moya, L. Salmon, J. Ruiz, D. Astruc, ACS Catal. 2019, 9, 1110–1119.
- 12Q. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral, P. Zhang, Q. Zhang, O. Terasaki, J. Yu, Angew. Chem. Int. Ed. 2019, 58, 18570–18576; Angew. Chem. 2019, 131, 18743–18749.
- 13R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256–1260.
- 14X. F. Lu, L. Yu, J. Zhang, X. W. D. Lou, Adv. Mater. 2019, 31, 1900699.
- 15L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun. 2019, 10, 5106.
- 16L. Xie, F. Qu, Z. Liu, X. Ren, S. Hao, R. Ge, G. Du, A. M. Asiri, X. Sun, L. Chen, J. Mater. Chem. A 2017, 5, 7806–7810.
- 17J. Xu, J. Cui, C. Guo, Z. Zhao, R. Jiang, S. Xu, Z. Zhuang, Y. Huang, L. Wang, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 6502–6505; Angew. Chem. 2016, 128, 6612–6615.
- 18J. Staszak-Jirkovský, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 2016, 15, 197–203.
- 19H. Song, Y. Li, L. Shang, Z. Tang, T. Zhang, S. Lu, Nano Energy 2020, 72, 104730.
- 20Q. Li, X. Zou, X. Ai, H. Chen, L. Sun, X. Zou, Adv. Energy Mater. 2018, 9, 1803369.
- 21H. Wang, Y. Yang, F. J. DiSalvo, H. D. Abruña, ACS Catal. 2020, 10, 4608–4616.
- 22Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chem. Int. Ed. 2020, 59, 1718–1726; Angew. Chem. 2020, 132, 1735–1743.
- 23F. Podjaski, D. Weber, S. Zhang, L. Diehl, R. Eger, V. Duppel, E. Alarcón-Lladó, G. Richter, F. Haase, A. Fontcuberta i Morral, C. Scheu, B. V. Lotsch, Nat. Catal. 2020, 3, 55–63.
- 24C. Wei, Y. Sun, G. G. Scherer, A. C. Fisher, M. Sherburne, J. W. Ager, Z. J. Xu, J. Am. Chem. Soc. 2020, 142, 7765–7775.
- 25Z. Xia, S. Guo, Chem. Soc. Rev. 2019, 48, 3265–3278.
- 26J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 4958.
- 27T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong, Y. Wang, S. Zhang, A. Han, L. Gu, R. Yu, X. Wen, H. Ren, L. Xu, C. Chen, Q. Peng, D. Wang, Y. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.
- 28D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A. M. Asiri, Q. Wei, X. Sun, Adv. Mater. 2018, 30, 1705366.
- 29W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, B. Yang, Adv. Mater. 2018, 30, 1800676.
- 30T. Feng, G. Yu, S. Tao, S. Zhu, R. Ku, R. Zhang, Q. Zeng, M. Yang, Y. Chen, W. Chen, W. Chen, B. Yang, J. Mater. Chem. A 2020, 8, 9638–9645.
- 31J. Wang, Z. Wei, S. Mao, H. Li, Y. Wang, Energy Environ. Sci. 2018, 11, 800–806.
- 32Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao, D. Chen, M. Peng, J. Liu, F. M. F. Groot, Y. Tan, ACS Energy Lett. 2020, 5, 192–199.
- 33H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. A. Pedersen, F. B. Prinz, J. K. Nørskov, Y. Cui, Science 2016, 354, 1031–1036.
- 34M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 35R. Chattot, O. Le Bacq, V. Beermann, S. Kuhl, J. Herranz, S. Henning, L. Kuhn, T. Asset, L. Guetaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmuller, T. J. Schmidt, P. Strasser, L. Dubau, F. Maillard, Nat. Mater. 2018, 17, 827–833.
- 36J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 2017, 8, 14969.
- 37Y. Liu, Y. Yang, Z. Peng, Z. Liu, Z. Chen, L. Shang, S. Lu, T. Zhang, Nano Energy 2019, 65, 104023.
- 38W. Li, Z. Wei, B. Wang, Y. Liu, H. Song, Z. Tang, B. Yang, S. Lu, Mater. Chem. Front. 2020, 4, 277–284.
- 39W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu, B. Yang, Energy Environ. Mater. 2019, 2, 172–192.
- 40V. C. Hoang, K. Dave, V. G. Gomes, Nano Energy 2019, 66, 104093.
- 41C. Hu, M. Li, J. Qiu, Y. P. Sun, Chem. Soc. Rev. 2019, 48, 2315–2337.
- 42B. Wang, J. Li, Z. Tang, B. Yang, S. Lu, Sci. Bull. 2019, 64, 1285–1292.
- 43S. Lu, L. Sui, J. Liu, S. Zhu, A. Chen, M. Jin, B. Yang, Adv. Mater. 2017, 29, 1603443.
- 44S. Zhang, J. Zhu, Y. Qing, L. Wang, J. Zhao, J. Li, W. Tian, D. Jia, Z. Fan, Adv. Funct. Mater. 2018, 28, 1805898.
- 45E. Cao, Z. Chen, H. Wu, P. Yu, Y. Wang, F. Xiao, S. Chen, S. Du, Y. Xie, Y. Wu, Z. Ren, Angew. Chem. Int. Ed. 2020, 59, 4154–4160; Angew. Chem. 2020, 132, 4183–4189.
- 46Y. Liu, X. Yong, Z. Liu, Z. Chen, Z. Kang, S. Lu, Adv. Sustainable Syst. 2019, 3, 1800161.