Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance
Correction(s) for this article
-
Corrigendum: Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance
- Yuanjun Chen,
- Rui Gao,
- Shufang Ji,
- Haijing Li,
- Kun Tang,
- Peng Jiang,
- Haibo Hu,
- Zedong Zhang,
- Haigang Hao,
- Qingyun Qu,
- Xiao Liang,
- Wenxing Chen,
- Juncai Dong,
- Dingsheng Wang,
- Yadong Li,
- Volume 61Issue 30Angewandte Chemie International Edition
- First Published online: July 18, 2022
Dr. Yuanjun Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Rui Gao
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shufang Ji
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHaijing Li
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorKun Tang
School of Physics and Materials Science, Anhui University, Hefei, 230601 China
Search for more papers by this authorDr. Peng Jiang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Haibo Hu
School of Physics and Materials Science, Anhui University, Hefei, 230601 China
Search for more papers by this authorZedong Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Haigang Hao
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorQingyun Qu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXiao Liang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Wenxing Chen
Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Juncai Dong
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yuanjun Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Rui Gao
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shufang Ji
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHaijing Li
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorKun Tang
School of Physics and Materials Science, Anhui University, Hefei, 230601 China
Search for more papers by this authorDr. Peng Jiang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Haibo Hu
School of Physics and Materials Science, Anhui University, Hefei, 230601 China
Search for more papers by this authorZedong Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Haigang Hao
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorQingyun Qu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXiao Liang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Wenxing Chen
Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Juncai Dong
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
The correlation between atomic configuration induced electronic density of single-atom Co active sites and oxygen reduction reaction (ORR) performance has been established by combining density-functional theory calculations and electrochemical analysis. A metal–organic framework derived single-atom Co catalyst, comprising an optimal Co1-N3PS active moiety supported on hollow carbon polyhedron (Co1-N3PS/HC), was synthesized, and it exhibits superior alkaline and acidic ORR performance.
Abstract
Demonstrated here is the correlation between atomic configuration induced electronic density of single-atom Co active sites and oxygen reduction reaction (ORR) performance by combining density-functional theory (DFT) calculations and electrochemical analysis. Guided by DFT calculations, a MOF-derived Co single-atom catalyst with the optimal Co1-N3PS active moiety incorporated in a hollow carbon polyhedron (Co1-N3PS/HC) was designed and synthesized. Co1-N3PS/HC exhibits outstanding alkaline ORR activity with a half-wave potential of 0.920 V and superior ORR kinetics with record-level kinetic current density and an ultralow Tafel slope of 31 mV dec−1, exceeding that of Pt/C and almost all non-precious ORR electrocatalysts. In acidic media the ORR kinetics of Co1-N3PS/HC still surpasses that of Pt/C. This work offers atomic-level insight into the relationship between electronic density of the active site and catalytic properties, promoting rational design of efficient catalysts.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202012798-sup-0001-misc_information.pdf23.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. K. Debe, Nature 2012, 486, 43–51;
- 1bG. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878–1889;
- 1cM. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657.
- 2
- 2aY. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394–400;
- 2bW. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 14385–14388;
- 2cY. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254–6262;
- 2dM. Xiao, Y. Chen, J. Zhu, H. Zhang, X. Zhao, L. Gao, X. Wang, J. Zhao, J. Ge, Z. Jiang, S. Chen, C. Liu, W. Xing, J. Am. Chem. Soc. 2019, 141, 17763–17770;
- 2eT. Sun, Y. Li, T. Cui, L. Xu, Y. G. Wang, W. Chen, P. Zhang, T. Zheng, X. Fu, S. Zhang, Z. Zhang, D. Wang, Y. Li, Nano Lett. 2020, 20, 6206–6214.
- 3
- 3aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 3bA. Schoedel, M. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2016, 116, 12466–12535;
- 3cA. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, J. Am. Chem. Soc. 2019, 141, 5201–5210;
- 3dQ. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438–1511.
- 4
- 4aL. Jiao, G. Wan, R. Zhang, H. Zhou, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 8525–8529; Angew. Chem. 2018, 130, 8661–8665;
- 4bH. Huang, K. Shen, F. Chen, Y. Li, ACS Catal. 2020, 10, 6579–6586;
- 4cH. F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414–1448.
- 5
- 5aY. Z. Chen, C. Wang, Z. Y. Wu, Y. Xiong, Q. Xu, S. H. Yu, H. L. Jiang, Adv. Mater. 2015, 27, 5010–5016;
- 5bB. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nat. Energy 2016, 1, 15006;
- 5cJ. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, J. Am. Chem. Soc. 2017, 139, 8212–8221;
- 5dA. A. Gewirth, J. A. Varnell, A. M. DiAscro, Chem. Rev. 2018, 118, 2313–2339.
- 6
- 6aY. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675–3679; Angew. Chem. 2014, 126, 3749–3753;
- 6bW. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568–576.
- 7
- 7aC. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 2017, 56, 13944–13960; Angew. Chem. 2017, 129, 14132–14148;
- 7bS. Mitchell, E. Vorobyeva, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2018, 57, 15316–15329; Angew. Chem. 2018, 130, 15538–15552;
- 7cJ. Yang, W. Li, D. Wang, Y. Li, Small Struct. 2020, https://doi.org/10.1002/sstr.202000051;
- 7dA. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81.
- 8
- 8aJ. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Nature 2017, 551, 605–608;
- 8bX. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259–268;
- 8cJ. Zhang, C. Zheng, M. Zhang, Y. Qiu, Q. Xu, W.-C. Cheong, W. Chen, L. Zheng, L. Gu, Z. Hu, D. Wang, Y. Li, Nano Res. 2020, 13, 3082–3087;
- 8dS. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2020, 59, 10651–10657; Angew. Chem. 2020, 132, 10738–10744;
- 8eG. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W.-F. Lin, H. Dai, Energy Environ. Sci. 2019, 12, 1317–1325;
- 8fN. Zhang, C. Ye, H. Yan, L. Li, H. He, D. Wang, Y. Li, Nano Res. 2020, 13, 3165–3182;
- 8gZ. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 2020, 13, 1856–1866;
- 8hF. Luo, A. Roy, L. Silvioli, D. A. Cullen, A. Zitolo, M. T. Sougrati, I. C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U. I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, Nat. Mater. 2020, 19, 1215–1223.
- 9
- 9aP. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797–801;
- 9bL. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Nat. Catal. 2019, 2, 134–141;
- 9cH. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63–72;
- 9dL. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher, Nat. Mater. 2019, 18, 746–751;
- 9eT. Sun, L. Xu, D. Wang, Y. Li, Nano Res. 2019, 12, 2067–2080.
- 10
- 10aH. Peng, F. Liu, X. Liu, S. Liao, C. You, X. Tian, H. Nan, F. Luo, H. Song, Z. Fu, P. Huang, ACS Catal. 2014, 4, 3797–3805;
- 10bL. Osmieri, A. H. A. Monteverde Videla, P. Ocón, S. Specchia, J. Phys. Chem. C 2017, 121, 17796–17817;
- 10cH. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339–348.
- 11
- 11aS. T. Thompson, A. R. Wilson, P. Zelenay, D. J. Myers, K. L. More, K. C. Neyerlin, D. Papageorgopoulos, Solid State Ionics 2018, 319, 68–76;
- 11bX. X. Wang, V. Prabhakaran, Y. He, Y. Shao, G. Wu, Adv. Mater. 2019, 31, 1805126.
- 12
- 12aX. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Nano Res. 2020, 13, 1842–1855;
- 12bB. Lu, Q. Liu, S. Chen, ACS Catal. 2020, 10, 7584–7618;
- 12cC. X. Zhao, B. Q. Li, J. N. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202003917; Angew. Chem. 2020, https://doi.org/10.1002/ange.202003917.
- 13
- 13aR. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076;
- 13bK. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y. R. Lu, T. S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.
- 14
- 14aE. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. Hooch Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436–442;
- 14bX. Wei, D. Zheng, M. Zhao, H. Chen, X. Fan, B. Gao, L. Gu, Y. Guo, J. Qin, J. Wei, Y. Zhao, G. Zhang, Angew. Chem. Int. Ed. 2020, 59, 14639–14646; Angew. Chem. 2020, 132, 14747–14754;
- 14cK. Yuan, D. Lutzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen, U. Scherf, J. Am. Chem. Soc. 2020, 142, 2404–2412.
- 15H. Jin Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gosele, Nat. Mater. 2006, 5, 627–631.
- 16
- 16aG. Wu, M. A. Nelson, N. H. Mack, S. Ma, P. Sekhar, F. H. Garzon, P. Zelenay, Chem. Commun. 2010, 46, 7489–7491;
- 16bG. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443–447.