Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage
Dr. Soheila Sanati
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorDr. Reza Abazari
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorDr. Josep Albero
Dep. Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, València, 46022 Spain
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorCorresponding Author
Prof. Hermenegildo García
Dep. Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, València, 46022 Spain
Search for more papers by this authorDr. Zibin Liang
Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Ruqiang Zou
Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorDr. Soheila Sanati
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorDr. Reza Abazari
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorDr. Josep Albero
Dep. Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, València, 46022 Spain
Search for more papers by this authorCorresponding Author
Prof. Ali Morsali
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175 Iran
Search for more papers by this authorCorresponding Author
Prof. Hermenegildo García
Dep. Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, València, 46022 Spain
Search for more papers by this authorDr. Zibin Liang
Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Ruqiang Zou
Beijing Key Lab of Theory and Technology for Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorGraphical Abstract
Bimetallic metal–organic frameworks (MOFs) have been applied as sacrificial templates or precursors in the preparation of derivatives that can be used in supercapacitors. Bimetallic MOFs and their derivatives can offer the advantages of improved electrochemical activity, convenient redox reactions, and high electrical conductivity, and are excellent candidates as advanced electrode materials.
Abstract
Supercapacitors (SCs), showing excellent power density, long service life, and high reversibility, have received great attention because of the increasing demand for energy storage devices. To further improve their performance, it is essential to develop advanced electrode materials. One group of materials, porous crystalline solids referred to as metal–organic frameworks (MOFs), have proved to be excellent templates for synthesizing functional materials to be employed in the preparation of electrodes for SCs. In comparison to monometallic MOFs, bimetallic MOFs and their derivatives offer a number of advantages, including tunable electrochemical activity, high charge capacity, and improved electrical conductivity. This review focuses on the use of MOF-derived bimetallic materials in SCs, the origin of the improved performance, and the latest developments in the field. Furthermore, the challenges and perspectives in this research area are discussed.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aK. Solaun, E. Cerdá, Renewable Sustainable Energy Rev. 2019, 116, 109415;
- 1bV. V. Quaschning, Renewable Energy and Climate Change, 2nd Edition, Wiley, Hoboken, 2019;
10.1002/9781119514909 Google Scholar
- 1cD. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 2019, 24, 38–50.
- 2
- 2aS. Ould Amrouche, D. Rekioua, T. Rekioua, S. Bacha, Int. J. Hydrogen Energy 2016, 41, 20914–20927;
- 2bQ. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 2013, 42, 3127–3171.
- 3
- 3aY. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233–9280;
- 3bM. A. Scibioh, B. Viswanathan, Materials for Supercapacitor Applications, Elsevier Science, Amsterdam, 2020;
- 3cJ. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z. X. Shen, Adv. Sci. 2018, 5, 1700322.
- 4F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 2017, 46, 6816–6854.
- 5M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta, Economic Anal. Policy 2019, 61, 93–103.
- 6A. K. Samantara, S. Ratha, Materials Development for Active/Passive Components of a Supercapacitor, Springer, Singapore, 2018.
10.1007/978-981-10-7263-5 Google Scholar
- 7A. C. Forse, C. Merlet, J. M. Griffin, C. P. Grey, J. Am. Chem. Soc. 2016, 138, 5731–5744.
- 8
- 8aJ. Wu, Q. e. Zhang, J. Wang, X. Huang, H. Bai, Energy Environ. Sci. 2018, 11, 1280–1286;
- 8bC. Zequine, C. K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O. N. Srivastava, B. K. Gupta, K. Ramasamy, P. K. Kahol, P. R. Dvornic, R. K. Gupta, Sci. Rep. 2016, 6, 31704;
- 8cR. Dubey, V. Guruviah, Ionics 2019, 25, 1419–1445.
- 9
- 9aC. Costentin, T. R. Porter, J.-M. Savéant, ACS Appl. Mater. Interfaces 2017, 9, 8649–8658;
- 9bB. Viswanathan, in Energy Sources (Ed.: B. Viswanathan), Elsevier, Amsterdam, 2017, pp. 315–328;
10.1016/B978-0-444-56353-8.00013-7 Google Scholar
- 9cP. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210–1211.
- 10
- 10aA. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, Renewable Sustainable Energy Rev. 2019, 101, 123–145;
- 10bA. Afif, S. M. H. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islan, A. K. Azad, J. Energy Storage 2019, 25, 100852.
- 11
- 11aPoonam, K. Sharma, A. Arora, S. K. Tripathi, J. Energy Storage 2019, 21, 801–825;
- 11bJ. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, J. Mater. Chem. A 2017, 5, 9443–9464.
- 12B. Zhu, D. Xia, R. Zou, Coord. Chem. Rev. 2018, 376, 430–448.
- 13
- 13aF. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi, J. Qin, Q. Fu, X. Bao, X. Feng, K. Müllen, Z.-S. Wu, J. Am. Chem. Soc. 2018, 140, 8198–8205;
- 13bA. Khosrozadeh, G. Singh, Q. Wang, G. Luo, M. Xing, J. Mater. Chem. A 2018, 6, 21064–21077.
- 14
- 14aS. Ortaboy, J. P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian, Energy Environ. Sci. 2017, 10, 1505–1516;
- 14bJ. Wei, X. Li, H. Xue, J. Shao, R. Zhu, H. Pang, Adv. Mater. Interfaces 2018, 5, 1701509.
- 15
- 15aW. Tian, Q. Gao, W. Qian, ACS Sustainable Chem. Eng. 2017, 5, 1297–1305;
- 15bX. Wang, C. Yang, J. Jin, X. Li, Q. Cheng, G. Wang, J. Mater. Chem. A 2018, 6, 4432–4442.
- 16
- 16aJ. Cao, C. Zhu, Y. Aoki, H. Habazaki, ACS Sustainable Chem. Eng. 2018, 6, 7292–7303;
- 16bH. Dan, K. Tao, Q. Zhou, Y. Gong, J. Lin, ACS Appl. Mater. Interfaces 2018, 10, 31340–31354;
- 16cR. Boddula, M. F. Ahmer, A. M. Asiri, Morphology Design Paradigms for Supercapacitors, CRC Press, Boca Raton, 2019.
- 17
- 17aL. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129–8176;
- 17bA. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606–4655;
- 17cA. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Adv. Mater. 2019, 31, 1900617;
- 17dZ. Karimi, A. Morsali, J. Mater. Chem. A 2013, 1, 3047–3054;
- 17eP. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, D. Fairen-Jimenez, Chem. Mater. 2017, 29, 2618–2625.
- 18
- 18aR. Abazari, A. Morsali, D. P. Dubal, Inorg. Chem. Front. 2020, 7, 2287–2304;
- 18bS. Sanati, R. Abazari, A. Morsali, Chem. Commun. 2020, 56, 6652–6655;
- 18cS. S. Shinde, C. H. Lee, J.-Y. Jung, N. K. Wagh, S.-H. Kim, D.-H. Kim, C. Lin, S. U. Lee, J.-H. Lee, Energy Environ. Sci. 2019, 12, 727–738;
- 18dA. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H.-C. Zhou, Chem. Soc. Rev. 2018, 47, 8611–8638;
- 18eR. Abazari, F. Ataei, A. Morsali, A. M. Z. Slawin, C. L. Carpenter-Warren, ACS Appl. Mater. Interfaces 2019, 11, 45442–45454;
- 18fR. Abazari, A. R. Mahjoub, S. Molaie, F. Ghaffarifar, E. Ghasemi, A. M. Z. Slawin, C. L. Carpenter-Warren, Ultrasonics Sonochem. 2018, 43, 248–261;
- 18gR. Abazari, A. R. Mahjoub, F. Ataei, A. Morsali, C. L. Carpenter-Warren, K. Mehdizadeh, A. M. Z. Slawin, Inorg. Chem. 2018, 57, 13364–13379.
- 19
- 19aM. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 19bV. Kumar, P. Kumar, S. Kumar, D. Singhal, R. Gupta, Inorg. Chem. 2019, 58, 10364–10376;
- 19cR. Abazari, S. Sanati, A. Morsali, A. Slawin, C. L. Carpenter-Warren, ACS Appl. Mater. Interfaces 2019, 11, 14759–14773.
- 20R. Abazari, S. Sanati, A. Morsali, A. M. Z. Slawin, C. L. Carpenter-Warren, W. Chen, A. Zheng, J. Mater. Chem. A 2019, 7, 11953–11966.
- 21
- 21aR. R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, ACS Nano 2017, 11, 5293–5308;
- 21bR. Zhao, Z. Liang, S. Gao, C. Yang, B. Zhu, J. Zhao, C. Qu, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 2019, 58, 1975–1979; Angew. Chem. 2019, 131, 1997–2001.
- 22Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Adv. Mater. 2018, 30, 1702891.
- 23N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933–969.
- 24
- 24aM. H. Yap, K. L. Fow, G. Z. Chen, Green Energy Environ. 2017, 2, 218–245;
- 24bF. Marpaung, M. Kim, J. H. Khan, K. Konstantinov, Y. Yamauchi, M. S. A. Hossain, J. Na, J. Kim, Chem. Asian J. 2019, 14, 1331–1343.
- 25J. G. Nguyen, S. M. Cohen, J. Am. Chem. Soc. 2010, 132, 4560–4561.
- 26
- 26aD. Sheberia, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224;
- 26bK. Wang, X. Wang, D. Zhang, H. Wang, Z. Wang, M. Zhao, R. Xi, H. Wu, M. Zheng, CrystEngComm 2018, 20, 6940–6949.
- 27X. Liu, C. Shi, C. Zhai, M. Cheng, Q. Liu, G. Wang, ACS Appl. Mater. Interfaces 2016, 8, 4585–4591.
- 28
- 28aL. Sun, M. G. Campbell, M. Dinca, Angew. Chem. Int. Ed. 2016, 55, 3566–3579; Angew. Chem. 2016, 128, 3628–3642;
- 28bW. Zhu, C. Zhang, Q. Li, L. Xiong, R. Chen, X. Wan, Z. Wang, W. Chen, Z. Deng, Y. Peng, Appl. Catal. B 2018, 238, 339–345;
- 28cA. J. Clough, J. M. Skelton, C. A. Downes, A. A. dela Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, J. Am. Chem. Soc. 2017, 139, 10863–10867;
- 28dD. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30–36;
- 28eD. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224.
- 29
- 29aL. S. Xie, G. Skorupskii, M. Dinca, Chem. Rev. 2020, 120, 8536–8580;
- 29bW. Zhang, B. Zheng, W. Shi, X. Chen, Z. Xu, S. Li, Y. Robin Chi, Y. Yang, J. Lu, W. Huang, F. Huo, Adv. Mater. 2018, 30, 1800643;
- 29cY. Wang, L. Feng, W. Fan, K.-Y. Wang, X. Wang, X. Wang, K. Zhang, X. Zhang, F. Dai, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2019, 141, 6967–6975;
- 29dB. S. Gelfand, G. K. H. Shimizu, Dalton Trans. 2016, 45, 3668–3678.
- 30
- 30aC. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu, D. Dang, S. Dai, Y. Chen, R. Zou, M. Liu, Small 2018, 14, 1800285;
- 30bJ. Liu, D. Zhu, C. Guo, A. Vasileff, S.-Z. Qiao, Adv. Energy Mater. 2017, 7, 1700518.
- 31
- 31aL. Liu, Y. Yan, Z. Cai, S. Lin, X. Hu, Adv. Mater. Interfaces 2018, 5, 1701548;
- 31bM.-L. Yue, C.-Y. Yu, H.-H. Duan, B.-L. Yang, X.-X. Meng, Z.-X. Li, Chem. Eur. J. 2018, 24, 16160–16169;
- 31cK.-Y. Zou, Y.-C. Liu, Y.-F. Jiang, C.-Y. Yu, M.-L. Yue, Z.-X. Li, Inorg. Chem. 2017, 56, 6184–6196.
- 32Y. Pan, Y. Zhao, S. Mu, Y. Wang, C. Jiang, Q. Liu, Q. Fang, M. Xue, S. Qiu, J. Mater. Chem. A 2017, 5, 9544–9552.
- 33
- 33aK. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, O. M. Yaghi, ACS Nano 2014, 8, 7451–7457;
- 33bJ. Liu, C. Wöll, Chem. Soc. Rev. 2017, 46, 5730–5770.
- 34
- 34aM. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 2019, 58, 15188–15205; Angew. Chem. 2019, 131, 15330–15347;
- 34bS. Abednatanzi, P. Gohari Derakhshandeh, H. Depauw, F.-X. Coudert, H. Vrielinck, P. Van Der Voort, K. Leus, Chem. Soc. Rev. 2019, 48, 2535–2565.
- 35
- 35aS. Sundriyal, H. Kaur, S. K. Bhardwaj, S. Mishra, K.-H. Kim, A. Deep, Coord. Chem. Rev. 2018, 369, 15–38;
- 35bX. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 2017, 46, 2660–2677;
- 35cS. Zheng, H. Xue, H. Pang, Coord. Chem. Rev. 2018, 373, 2–21;
- 35dC. Wang, Y. V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Mater. Horiz. 2018, 5, 394–407;
- 35eX.-C. Xie, K.-J. Huang, X. Wu, J. Mater. Chem. A 2018, 6, 6754–6771.
- 36W. Chaikittisilp, M. Hu, H. Wang, H.-S. Huang, T. Fujita, K. C. W. Wu, L.-C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259–7261.
- 37S. Horike, D. Umeyama, S. Kitagawa, Acc. Chem. Res. 2013, 46, 2376–2384.
- 38
- 38aX. Xu, W. Shi, P. Li, S. Ye, C. Ye, H. Ye, T. Lu, A. Zheng, J. Zhu, L. Xu, M. Zhong, X. Cao, Chem. Mater. 2017, 29, 6058–6065;
- 38bJ. Kim, C. Young, J. Lee, Y.-U. Heo, M.-S. Park, M. S. A. Hossain, Y. Yamauchi, J. H. Kim, J. Mater. Chem. A 2017, 5, 15065–15072;
- 38cZ. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 2018, 57, 9604–9633; Angew. Chem. 2018, 130, 9750–9780.
- 39
- 39aH. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 2015, 285, 281–290;
- 39bB. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Carbon 2010, 48, 456–463.
- 40X. Jiang, Z. Kang, X. Guo, H. Zhuang, Novel Carbon Materials and Composites, Wiley, Oxford (UK), 2019, pp. 137–167.
10.1002/9781119313649.ch5 Google Scholar
- 41J. Qian, X. Wang, L. Chai, L.-F. Liang, T.-T. Li, Y. Hu, S. Huang, Cryst. Growth Des. 2018, 18, 2358–2364.
- 42S. Maiti, A. Pramanik, S. Mahanty, CrystEngComm 2016, 18, 450–461.
- 43A. T. E. Vilian, B. Dinesh, M. Rethinasabapathy, S.-K. Hwang, C.-S. Jin, Y. S. Huh, Y.-K. Han, J .Mater. Chem. A 2018, 6, 14367–14379.
- 44X.-Y. Yu, L. Yu, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 5331–5335; Angew. Chem. 2015, 127, 5421–5425.
- 45S. Zhang, D. Li, S. Chen, X. Yang, X. Zhao, Q. Zhao, S. Komarneni, D. Yang, J. Mater. Chem. A 2017, 5, 12453–12461.
- 46S. Zhang, Z. Yang, K. Gong, B. Xu, H. Mei, H. Zhang, J. Zhang, Z. Kang, Y. Yan, D. Sun, Nanoscale 2019, 11, 9598–9607.
- 47
- 47aR. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim, Y. Yamauchi, ACS Nano 2015, 9, 6288–6296;
- 47bJ. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, J. Mater. Chem. A 2014, 2, 19005–19010.
- 48Z. Wu, L. Li, J.-m. Yan, X.-b. Zhang, Adv. Sci. 2017, 4, 1600382.
- 49S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, S. Qiu, J. Mater. Chem. A 2015, 3, 20145–20152.
- 50P. Yang, X. Song, C. Jia, H.-S. Chen, J. Ind. Eng. Chem. 2018, 62, 250–257.
- 51G.-C. Li, P.-F. Liu, R. Liu, M. Liu, K. Tao, S.-R. Zhu, M.-K. Wu, F.-Y. Yi, L. Han, Dalton Trans. 2016, 45, 13311–13316.
- 52K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, L. Han, Chem. Eur. J. 2018, 24, 12584–12591.
- 53P. Zhang, B. Y. Guan, L. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 7141–7145; Angew. Chem. 2017, 129, 7247–7251.
- 54C. Chen, M.-K. Wu, K. Tao, J.-J. Zhou, Y.-L. Li, X. Han, L. Han, Dalton Trans. 2018, 47, 5639–5645.
- 55T. Huang, X.-Z. Song, X. Chen, X.-L. Chen, F.-F. Sun, Q.-F. Su, L.-D. Li, Z. Tan, New J. Chem. 2018, 42, 5128–5134.
- 56G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, L. Han, RSC Adv. 2016, 6, 103517–103522.
- 57Z. S. Yan, J. Y. Long, Q. F. Zhou, Y. Gong, J. H. Lin, Dalton Trans. 2018, 47, 5390–5405.
- 58Y. C. Wang, W. B. Li, L. Zhao, B. Q. Xu, Phys. Chem. Chem. Phys. 2016, 18, 17941–17948.
- 59C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B. M. deglee, Y. Chen, K. S. Walton, R. Zou, M. Liu, ACS Energy Lett. 2017, 2, 1263–1269.
- 60H. Mei, Y. Mei, S. Zhang, Z. Xiao, B. Xu, H. Zhang, L. Fan, Z. Huang, W. Kang, D. Sun, Inorg. Chem. 2018, 57, 10953–10960.
- 61S.-H. Lee, S. Choi, Mater. Lett. 2017, 207, 129–132.
- 62W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, L. Guo, ACS Sustainable Chem. Eng. 2017, 5, 4144–4153.
- 63C. Young, R. R. Salunkhe, S. M. Alshehri, T. Ahamad, Z. Huang, J. Henzie, Y. Yamauchi, J. Mater. Chem. A 2017, 5, 11834–11839.
- 64M. S. Rahmanifar, H. Hesari, A. Noori, M. Y. Masoomi, A. Morsali, M. F. Mousavi, Electrochim. Acta 2018, 275, 76–86.
- 65S. He, Z. Li, J. Wang, P. Wen, J. Gao, L. Ma, Z. Yang, S. Yang, RSC Adv. 2016, 6, 49478–49486.
- 66Q. Wang, F. Gao, B. Xu, F. Cai, F. Zhan, F. Gao, Q. Wang, Chem. Eng. J. 2017, 327, 387–396.
- 67Y. Miao, Y. Sui, D. Zhang, J. Qi, F. Wei, Q. Meng, Y. He, Z. Sun, Y. Ren, Mater. Lett. 2019, 242, 42–46.
- 68C. Yu, Y. Wang, J. Cui, D. Yu, X. Zhang, X. Shu, J. Zhang, Y. Zhang, R. Vajtai, P. M. Ajayan, Y. Wu, J. Mater. Chem. A 2018, 6, 8396–8404.
- 69A. S. Rajpurohit, N. S. Punde, A. K. Srivastava, J. Colloid Interface Sci. 2019, 553, 328–340.
- 70Q. Zhou, Y. Gong, K. Tao, Electrochim. Acta 2019, 320, 134582.
- 71J. Linnemann, L. Taudien, M. Klose, L. Giebeler, J. Mater. Chem. A 2017, 5, 18420–18428.
- 72
- 72aH.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854–11857;
- 72bJ. Y. Cheong, W.-T. Koo, C. Kim, J.-W. Jung, I.-D. Kim, ACS Appl. Mater. Interfaces 2018, 10, 20540–20549;
- 72cL.-L. Wu, Q.-S. Wang, J. Li, Y. Long, Y. Liu, S.-Y. Song, H.-J. Zhang, Small 2018, 14, 1704035.
- 73A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134–8172.
- 74
- 74aM.-T. Li, N. Kong, Y.-Q. Lan, Z.-M. Su, Dalton Trans. 2018, 47, 4827–4832;
- 74bS. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 2017, 7, 1602733;
- 74cW. Du, Y.-L. Bai, J. Xu, H. Zhao, L. Zhang, X. Li, J. Zhang, J. Power Sources 2018, 402, 281–295;
- 74dJ.-J. Zhou, X. Han, K. Tao, Q. Li, Y.-L. Li, C. Chen, L. Han, Chem. Eng. J. 2018, 354, 875–884.
- 75
- 75aD. Jung, L. M. A. Saleh, Z. J. Berkson, M. F. El-Kady, J. Y. Hwang, N. Mohamed, A. I. Wixtrom, E. Titarenko, Y. Shao, K. McCarthy, J. Guo, I. B. Martini, S. Kraemer, E. C. Wegener, P. Saint-Cricq, B. Ruehle, R. R. Langeslay, M. Delferro, J. L. Brosmer, C. H. Hendon, M. Gallagher-Jones, J. Rodriguez, K. W. Chapman, J. T. Miller, X. Duan, R. B. Kaner, J. I. Zink, B. F. Chmelka, A. M. Spokoyny, Nat. Mater. 2018, 17, 341–348;
- 75bW. H. Low, P. S. Khiew, S. S. Lim, C. W. Siong, E. R. Ezeigwe, J. Alloys Compd. 2019, 775, 1324–1356.
- 76P. Mahata, D. Sarma, C. Madhu, A. Sundaresen, S. Natarajan, Dalton Trans. 2011, 40, 1952–1960.
- 77
- 77aR. Ding, X. Li, W. Shi, Q. Xu, X. Han, Y. Zhou, W. Hong, E. Liu, J. Mater. Chem. A 2017, 5, 17822–17827;
- 77bM. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364–5457.
- 78
- 78aD. C. Martínez Casillas, M. P. Longinotti, M. M. Bruno, F. Vaca Chávez, R. H. Acosta, H. R. Corti, J. Phys. Chem. C 2018, 122, 3638–3647;
- 78bM. F. Lagadec, R. Zahn, S. Müller, V. Wood, Energy Environ. Sci. 2018, 11, 3194–3200.
- 79L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Mater. Chem. Front. 2017, 1, 1709–1745.
- 80
- 80aJ. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mater. 2012, 24, 5166–5180;
- 80bC. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488–1504; Angew. Chem. 2014, 126, 1512–1530;
- 80cC. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. Lou, Adv. Funct. Mater. 2012, 22, 4592–4597.
- 81X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang, P. Zhang, M. Yu, W. Li, C. Liang, Y. Tong, J. Mater. Chem. 2012, 22, 13357–13364.
- 82
- 82aT. Zhu, E. R. Koo, G. W. Ho, RSC Adv. 2015, 5, 1697–1704;
- 82bF. Li, Y. Xing, M. Huang, K. L. Li, T. T. Yu, Y. X. Zhang, D. Losic, J. Mater. Chem. A 2015, 3, 7855–7861.
- 83Z. Dai, X. Zang, J. Yang, C. Sun, W. Si, W. Huang, X. Dong, ACS Appl. Mater. Interfaces 2015, 7, 25396–25401.
- 84
- 84aM. D. Regulacio, Y. Wang, Z. W. Seh, M.-Y. Han, ACS Appl. Nano Mater. 2018, 1, 3042–3062;
- 84bX. Zhu, D. Liu, D. Zheng, G. Wang, X. Huang, J. Harris, D. Qu, D. Qu, J. Mater. Chem. A 2018, 6, 13294–13301.
- 85
- 85aZ. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Energy Environ. Sci. 2015, 8, 1309–1316;
- 85bT. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209–231;
- 85cX.-Y. Yu, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 1501333.
- 86
- 86aA. M. Elshahawy, X. Li, H. Zhang, Y. Hu, K. H. Ho, C. Guan, J. Wang, J. Mater. Chem. A 2017, 5, 7494–7506;
- 86bS. Tang, B. Zhu, X. Shi, J. Wu, X. Meng, Adv. Energy Mater. 2017, 7, 1601985.
- 87
- 87aB. Y. Guan, L. Yu, X. Wang, S. Song, X. W. Lou, Adv. Mater. 2017, 29, 1605051;
- 87bY. M. Chen, Z. Li, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 10521–10524; Angew. Chem. 2015, 127, 10667–10670.
- 88
- 88aM. Pramanik, R. R. Salunkhe, M. Imura, Y. Yamauchi, ACS Appl. Mater. Interfaces 2016, 8, 9790–9797;
- 88bC. Mondal, M. Ganguly, P. K. Manna, S. M. Yusuf, T. Pal, Langmuir 2013, 29, 9179–9187.
- 89
- 89aW. Peng, H. Li, S. Song, ACS Appl. Mater. Interfaces 2017, 9, 5204–5212;
- 89bS. Gao, Y. Sun, F. Lei, L. Liang, J. Liu, W. Bi, B. Pan, Y. Xie, Angew. Chem. Int. Ed. 2014, 53, 12789–12793; Angew. Chem. 2014, 126, 13003–13007.
- 90
- 90aJ. Li, M. Yang, J. Wei, Z. Zhou, Nanoscale 2012, 4, 4498–4503;
- 90bT. Bhowmik, M. K. Kundu, S. Barman, ACS Appl. Energy Mater. 2018, 1, 1200–1209;
- 90cM. Yu, R. Liu, J. Liu, S. Li, Y. Ma, Small 2017, 13, 1702616.
- 91
- 91aY. Chen, W. K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Nano Lett. 2017, 17, 429–436;
- 91bZ. Zhao, H. Wu, H. He, X. Xu, Y. Jin, Adv. Funct. Mater. 2014, 24, 4698–4705.
- 92X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, J. Power Sources 2013, 238, 150–156.
- 93
- 93aQ. Ke, C. Guan, X. Zhang, M. Zheng, Y.-W. Zhang, Y. Cai, H. Zhang, J. Wang, Adv. Mater. 2017, 29, 1604164;
- 93bH. Pang, X. Li, Q. Zhao, H. Xue, W.-Y. Lai, Z. Hu, W. Huang, Nano Energy 2017, 35, 138–145;
- 93cY. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 2016, 26, 4085–4093.
- 94T. Han, M.-S. Park, J. Kim, J. H. Kim, K. Kim, Chem. Sci. 2016, 7, 1791–1796.
- 95N. L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A. A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Small 2014, 10, 2096–2107.
- 96N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521–2523.
- 97
- 97aJ. Tang, R. R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S. M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J. H. Kim, Y. Yamauchi, Sci. Rep. 2016, 6, 30295;
- 97bB. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390–5391.
- 98A. Jayakumar, R. P. Antony, R. Wang, J.-M. Lee, Small 2017, 13, 1603102.
- 99Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, J. Power Sources 2015, 298, 130–137.