Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO2
Lei Song
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorDong-Min Fu
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorLiang Chen
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorYuan-Xu Jiang
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorDr. Jian-Heng Ye
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorLei Zhu
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Lan
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 P. R. China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 P. R. China
Search for more papers by this authorDr. Qiang Fu
School of Pharmacy, Southwest Medical University, Luzhou, 646000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Da-Gang Yu
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorLei Song
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorDong-Min Fu
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorLiang Chen
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorYuan-Xu Jiang
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorDr. Jian-Heng Ye
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Search for more papers by this authorLei Zhu
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Lan
College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 P. R. China
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 P. R. China
Search for more papers by this authorDr. Qiang Fu
School of Pharmacy, Southwest Medical University, Luzhou, 646000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Da-Gang Yu
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 P. R. China
Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorGraphical Abstract
Reported is the first remote difunctionalization of unactivated alkenes with CO2 by visible-light photoredox catalysis. Mechanistic studies indicate that a 1,5-hydrogen atom-transfer process is the rate-limiting step and reduction of radical intermediates generates the corresponding carbanions. Other electrophiles, including aldehydes, ketones, and benzylic bromides, are also applicable in this process, demonstrating a general strategy for redox-neutral remote difunctionalization of unactivated alkenes.
Abstract
Remote difunctionalization of unactivated alkenes is challenging but a highly attractive tactic to install two functional groups across long distances. Reported herein is the first remote difunctionalization of alkenes with CO2. This visible-light photoredox catalysis strategy provides a facile method to synthesize a series of carboxylic acids bearing valuable fluorine- or phosphorus-containing functional groups. Moreover, this versatile protocol shows mild reaction conditions, broad substrate scope, and good functional-group tolerance. Based on DFT calculations, a radical adds to an unactivated alkene to smoothly form a new carbon radical, followed by a 1,5-hydrogen atom-transfer process, the rate-limiting step, generating a more stable benzylic radical. The reduction of the benzylic radicals by an IrII species generates the corresponding benzylic carbanions as the key intermediates, which further undergo nucleophilic attack with CO2 to generate carboxylates.
Conflict of interest
A Chinese Patent on this work has been applied with the number 202010751742.3.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202008630-sup-0001-misc_information.pdf8.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
10.1002/9783527629916 Google Scholar
- 2
- 2aL. Ackermann, Angew. Chem. Int. Ed. 2011, 50, 3842–3844; Angew. Chem. 2011, 123, 3926–3928;
- 2bK. Huang, C. L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435–2452;
- 2cM. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620–9633; Angew. Chem. 2013, 125, 9798–9812;
- 2dQ. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933;
- 2eJ. Luo, I. Larrosa, ChemSusChem 2017, 10, 3317–3332;
- 2fQ.-W. Song, Z.-H. Zhou, L.-N. He, Green Chem. 2017, 19, 3707–3728;
- 2gW. Zhang, N. Zhang, C. Guo, X.-B. Lu, Chin. J. Org. Chem. 2017, 37, 1309–1321;
- 2hY.-G. Chen, X.-T. Xu, K. Zhang, Y.-Q. Li, L.-P. Zhang, P. Fang, T.-S. Mei, Synthesis 2018, 50, 35–48;
- 2iA. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948–15982; Angew. Chem. 2018, 130, 16178–16214;
- 2jS.-S. Yan, Q. Fu, L.-L. Liao, G.-Q. Sun, J.-H. Ye, L. Gong, Y.-Z. Bo-Xue, D.-G. Yu, Coord. Chem. Rev. 2018, 374, 439–463;
- 2kP. Xu, S.-Y. Wang, Y. Fang, S.-J. Ji, Chin. J. Org. Chem. 2018, 38, 1626–1637;
- 2lS. Wang, C. Xi, Chem. Soc. Rev. 2019, 48, 382–404;
- 2mY. Yang, J. Lee, Chem. Sci. 2019, 10, 3905–3926;
- 2nM. D. Burkart, N. Hazari, C. L. Tway, E. L. Zeitler, ACS Catal. 2019, 9, 7937–7956;
- 2oB. Grignard, Gennen, S. C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 4466–4514;
- 2pL. Zhang, Z. Li, M. Takimoto, Z. Hou, Chem. Rec. 2020, 20, 494–512;
- 2qL. Song, Y.-X. Jiang, Z. Zhang, Y.-Y. Gui, X.-Y. Zhou, D.-G. Yu, Chem. Commun. 2020, 56, 8355–8367;
- 2rC.-K. Ran, X.-W. Chen, Y.-Y. Gui, J. Liu, L. Song, K. Ren, D.-G. Yu, Sci. China Chem. 2020, https://doi.org/10.1007/s11426-020-9788-2.
- 3
- 3aA. Albini, M. Fagnoni, Handbook of Synthetic Photochemistry, Wiley-VCH, Weinheim, 2009;
10.1002/9783527628193 Google Scholar
- 3bC. Stephenson, T. Yoon, D. W. C. MacMillan, Visible Light Photocatalysis in Organic Chemistry, Wiley-VCH, Weinheim, 2018;
10.1002/9783527674145 Google Scholar
- 3cJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828–6838; Angew. Chem. 2012, 124, 6934–6944;
- 3dC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 3eD. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176;
- 3fE. Meggers, Chem. Commun. 2015, 51, 3290–3301;
- 3gD. C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969–1979;
- 3hJ. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel, G. A. Molander, Acc. Chem. Res. 2016, 49, 1429–1439;
- 3iN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166;
- 3jM. N. Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49, 2261–2272;
- 3kK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035–10074;
- 3lJ.-P. Goddard, C. Ollivier, L. Fensterbank, Acc. Chem. Res. 2016, 49, 1924–1936;
- 3mE. C. Gentry, R. R. Knowles, Acc. Chem. Res. 2016, 49, 1546–1556;
- 3nQ. Liu, L.-Z. Wu, Natl. Sci. Rev. 2017, 4, 359–380;
- 3oJ. Xie, H. Jin, A. S. K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193–5203;
- 3pL. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57, 10034–10072; Angew. Chem. 2018, 130, 10188–10228;
- 3qL. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 3730–3747; Angew. Chem. 2019, 131, 3768–3786;
- 3rR. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019, 1, 111–125;
- 3sH. Jiang, A. Studer, CCS Chem. 2019, 1, 38–49;
- 3tY. Chen, L.-Q. Lu, D.-G. Yu, C.-J. Zhu, W.-J. Xiao, Sci. China Chem. 2019, 62, 24–57;
- 3uW.-J. Zhou, Y.-X. Jiang, L. Chen, K.-X. Liu, D.-G. Yu, Chin. J. Org. Chem. 2020, 40, https://doi.org/10.6023/cjoc202004045.
- 4For selected reviews on UV-light-driven carboxylation with CO2, see:
- 4aY.-Y. Gui, W.-J. Zhou, J.-H. Ye, D.-G. Yu, ChemSusChem 2017, 10, 1337–1340; For selected examples, see:
- 4bY. Masuda, N. Ishida, M. Murakami, J. Am. Chem. Soc. 2015, 137, 14063–14066;
- 4cN. Ishida, Y. Masuda, S. Uemoto, M. Murakami, Chem. Eur. J. 2016, 22, 6524–6527;
- 4dH. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969–13972;
- 4eH. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9, 453–456;
- 4fN. Ishida, Y. Masuda, Y. Imamura, K. Yamazaki, M. Murakami, J. Am. Chem. Soc. 2019, 141, 19611–19615.
- 5For reviews on visible-light-driven carboxylation with CO2, see:
- 5aJ. Hou, J.-S. Li, J. Wu, Asian J. Org. Chem. 2018, 7, 1439–1447;
- 5bF. Tan, G. Yin, Chin. J. Chem. 2018, 36, 545–554;
- 5cY. Cao, X. He, N. Wang, H.-R. Li, L.-N. He, Chin. J. Chem. 2018, 36, 644–659;
- 5dC. S. Yeung, Angew. Chem. Int. Ed. 2019, 58, 5492–5502; Angew. Chem. 2019, 131, 5546–5556; For selected examples, see:
- 5eK. Murata, N. Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa, Chem. Commun. 2017, 53, 3098–3101;
- 5fM.-Y. Wang, Y. Cao, X. Liu, N. Wang, L.-N. He, S.-H. Li, Green Chem. 2017, 19, 1240–1244;
- 5gK. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 9467–9470;
- 5hV. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 10915–10919; Angew. Chem. 2017, 129, 11055–11059;
- 5iQ.-Y. Meng, S. Wang, B. König, Angew. Chem. Int. Ed. 2017, 56, 13426–13430; Angew. Chem. 2017, 129, 13611–13615;
- 5jJ.-H. Ye, M. Miao, H. Huang, S.-S. Yan, Z.-B. Yin, W.-J. Zhou, D.-G. Yu, Angew. Chem. Int. Ed. 2017, 56, 15416–15420; Angew. Chem. 2017, 129, 15618–15622;
- 5kZ.-B. Yin, J.-H. Ye, W.-J. Zhou, Y.-H. Zhang, L. Ding, Y.-Y. Gui, S.-S. Yan, J. Li, D.-G. Yu, Org. Lett. 2018, 20, 190–193;
- 5lJ. Hou, A. Ee, W. Feng, J.-H. Xu, Y. Zhao, J. Wu, J. Am. Chem. Soc. 2018, 140, 5257–5263;
- 5mL. Sun, J.-H. Ye, W.-J. Zhou, X. Zeng, D.-G. Yu, Org. Lett. 2018, 20, 3049–3052;
- 5nQ.-Y. Meng, S. Wang, G. S. Huff, B. König, J. Am. Chem. Soc. 2018, 140, 3198–3201;
- 5oT. Ju, Q. Fu, J.-H. Ye, Z. Zhang, L.-L. Liao, S.-S. Yan, X.-Y. Tian, S.-P. Luo, J. Li, D.-G. Yu, Angew. Chem. Int. Ed. 2018, 57, 13897–13901; Angew. Chem. 2018, 130, 14093–14097;
- 5pX. Fan, X. Gong, M. Ma, R. Wang, P. J. Walsh, Nat. Commun. 2018, 9, 4936;
- 5qL.-L. Liao, G.-M. Cao, J.-H. Ye, G.-Q. Sun, W.-J. Zhou, Y.-Y. Gui, S.-S. Yan, G. Shen, D.-G. Yu, J. Am. Chem. Soc. 2018, 140, 17338–17342;
- 5rJ. Hou, A. Ee, H. Cao, H.-W. Ong, J.-H. Xu, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 17220–17224; Angew. Chem. 2018, 130, 17466–17470;
- 5sK. Murata, N. Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa, Front. Chem. 2019, 7, 371;
- 5tK. Shimomaki, T. Nakajima, J. Caner, N. Toriumi, N. Iwasawa, Org. Lett. 2019, 21, 4486–4489;
- 5uS. K. Bhunia, P. Das, S. Nandi, R. Jana, Org. Lett. 2019, 21, 4632–4637;
- 5vB. Sahoo, P. Bellotti, F. Juliá-Hernández, Q.-Y. Meng, S. Crespi, B. König, R. Martin, Chem. Eur. J. 2019, 25, 9001–9005;
- 5wC. Zhu, Y.-F. Zhang, Z.-Y. Liu, L. Zhou, H. Liu, C. Feng, Chem. Sci. 2019, 10, 6721–6726;
- 5xQ. Fu, Z.-Y. Bo, J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Nat. Commun. 2019, 10, 3582;
- 5yQ.-Y. Meng, T. E. Schirmer, A. L. Berger, K. Donabauer, B. König, J. Am. Chem. Soc. 2019, 141, 11393–11397;
- 5zH. Wang, Y. Gao, C. Zhou, G. Li, J. Am. Chem. Soc. 2020, 142, 8122–8129;
- 5aaW.-J. Zhou, Z.-H. Wang, L.-L. Liao, Y.-X. Jiang, K.-G. Cao, T. Ju, Y. Li, G.-M. Cao, D.-G. Yu, Nat. Commun. 2020, 11, 3263;
- 5abH. Huang, J.-H. Ye, L. Zhu, C.-K. Ran, M. Miao, W. Wang, H. Chen, X.-Y. Zhou, Y. Lan, B. Yu, D.-G. Yu, CCS Chem. 2020, https://doi.org/10.31635/ccschem.020.202000374.
- 6For focus reviews on photocatalytic difunctionalization of alkenes, see:
- 6aT. Koike, M. Akita, Acc. Chem. Res. 2016, 49, 1937–1945;
- 6bT. Courant, G. Masson, J. Org. Chem. 2016, 81, 6945–6952;
- 6cT. Koike, M. Akita, Chem 2018, 4, 409–437;
- 6dL. Pitzer, J. L. Schwarz, F. Glorius, Chem. Sci. 2019, 10, 8285–8291;
- 6eZ. Zhang, L. Gong, X.-Y. Zhou, S.-S. Yan, J. Li, D.-G. Yu, Acta Chim. Sinica 2019, 77, 783–793; For reviews on difunctionalization of alkenes via other strategies, see:
- 6fE. Merino, C. Nevado, Chem. Soc. Rev. 2014, 43, 6598–6608;
- 6gG. Yin, X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 2413–2423;
- 6hX. W. Lan, N. X. Wang, Y. Xing, Eur. J. Org. Chem. 2017, 5821–5851;
- 6iJ. S. Zhang, L. Liu, T. Chen, L. B. Han, Chem. Asian J. 2018, 13, 2277–2291;
- 6jG. S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175–5187;
- 6kX. Wu, S. Wu, C. Zhu, Tetrahedron Lett. 2018, 59, 1328–1336;
- 6lZ. Liu, Y. Gao, T. Zeng, K. M. Engle, Isr. J. Chem. 2020, 60, 219–229.
- 7For recent reviews, see:
- 7aX.-Q. Hu, J.-R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2017, 56, 1960–1962; Angew. Chem. 2017, 129, 1988–1990;
- 7bL. M. Stateman, K. M. Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569–1586;
- 7cH. Chen, S. Yu, Org. Biomol. Chem. 2020, 18, 4519–4532; For selected examples, see:
- 7dG. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268–271;
- 7eJ. C. Chu, T. Rovis, Nature 2016, 539, 272–275;
- 7fS. Mukherjee, B. Maji, A. Tlahuext-Aca, F. Glorius, J. Am. Chem. Soc. 2016, 138, 16200–16203;
- 7gP. Becker, T. Duhamel, C. J. Stein, M. Reiher, K. Muñiz, Angew. Chem. Int. Ed. 2017, 56, 8004–8008; Angew. Chem. 2017, 129, 8117–8121;
- 7hW. Shu, A. Genoux, Z. Li, C. Nevado, Angew. Chem. Int. Ed. 2017, 56, 10521–10524; Angew. Chem. 2017, 129, 10657–10660;
- 7iE. M. Dauncey, S. P. Morcillo, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2018, 57, 744–748; Angew. Chem. 2018, 130, 752–756;
- 7jH. Jiang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 1692–1696; Angew. Chem. 2018, 130, 1708–1712;
- 7kX. Wu, H. Zhang, N. Tang, Z. Wu, D. Wang, M. Ji, Y. Xu, M. Wang, C. Zhu, Nat. Commun. 2018, 9, 3343.
- 8For a review, see:
- 8aH. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018, 4, 153–165; For selected examples, see:
- 8bT. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, J. Am. Chem. Soc. 2012, 134, 16544–16547;
- 8cJ. V. Obligacion, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 19107–19110;
- 8dT.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014, 508, 340–344;
- 8eA. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I. Marek, Nature 2014, 505, 199–203;
- 8fJ. S. Bair, Y. Schramm, A. G. Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 13098–13101;
- 8gI. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew. Chem. Int. Ed. 2015, 54, 14523–14526; Angew. Chem. 2015, 127, 14731–14734;
- 8hL. Lin, C. Romano, C. Mazet, J. Am. Chem. Soc. 2016, 138, 10344–10350;
- 8iY. He, Y. Cai, S. Zhu, J. Am. Chem. Soc. 2017, 139, 1061–1064;
- 8jM. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161–12164;
- 8kX. Chen, Z. Cheng, J. Guo, Z. Lu, Nat. Commun. 2018, 9, 3939.
- 9For reviews, see:
- 9aW. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc. Rev. 2018, 47, 654–667;
- 9bX. Wu, C. Zhu, Acc. Chem. Res. 2020, 53, 1620—1636; For selected examples, see:
- 9cP. Yu, J.-S. Lin, L. Li, S.-C. Zheng, Y.-P. Xiong, L.-J. Zhao, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2014, 53, 11890–11894; Angew. Chem. 2014, 126, 12084–12088;
- 9dP. Yu, S.-C. Zheng, N.-Y. Yang, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 4041–4045; Angew. Chem. 2015, 127, 4113–4117;
- 9eL. Huang, S.-C. Zheng, B. Tan, X.-Y. Liu, Org. Lett. 2015, 17, 1589–1592;
- 9fG. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba, F. Gagosz, Angew. Chem. Int. Ed. 2017, 56, 11440–11444; Angew. Chem. 2017, 129, 11598–11602;
- 9gX. Nie, C. Cheng, G. Zhu, Angew. Chem. Int. Ed. 2017, 56, 1898–1902; Angew. Chem. 2017, 129, 1924–1928;
- 9hW. Shu, E. Merino, C. Nevado, ACS Catal. 2018, 8, 6401–6406.
- 10
- 10aJ. Jones, Amino Acid and Peptide Synthesis, Oxford Univ. Press, Oxford, 2002;
- 10bO. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495–5551.
- 11
- 11aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 11bT. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013, 125, 8372–8423;
- 11cH. Mei, J. Han, K. D. Klika, K. Izawa, T. Sato, N. A. Meanwell, V. A. Soloshonok, Eur. J. Med. Chem. 2020, 186, 111826.
- 12J.-B. Tommasino, A. Brondex, M. Médebielle, M. Thomalla, B. R. Langlois, T. Billard, Synlett 2002, 1697–1699.
- 13J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004, 126, 2763–2767.
- 14
- 14aD. Leca, L. Fensterbank, E. Lacôte, M. Malacria, Chem. Soc. Rev. 2005, 34, 858–865;
- 14bC. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 2011, 111, 7981–8006;
- 14cG. P. Horsman, D. L. Zechel, Chem. Rev. 2017, 117, 5704–5783.
- 15The M06 level of theory:
- 15aY. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241; The def2-svp level of theory:
- 15bD. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123–141;
- 15cD. Feller, J. Comput. Chem. 1996, 17, 1571–1586;
- 15dF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
- 15eK. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045–1052;
- 15fB. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814–4820; The SMD level of theory:
- 15gA. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396; The B3LYP level of theory:
- 15hP. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.