A Yolk–Shell-Structured FePO4 Cathode for High-Rate and Long-Cycling Sodium-Ion Batteries
Zhuangzhuang Zhang
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorYichen Du
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qin-Chao Wang
Department of Materials Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJingyi Xu
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorProf. Yong-Ning Zhou
Department of Materials Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Jianchun Bao
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Jian Shen
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Xiaosi Zhou
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorZhuangzhuang Zhang
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorYichen Du
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qin-Chao Wang
Department of Materials Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJingyi Xu
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorProf. Yong-Ning Zhou
Department of Materials Science, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Jianchun Bao
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Jian Shen
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Xiaosi Zhou
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorGraphical Abstract
FePO4 nanospheres consisting of mesoporous nanoyolks supported inside robust porous nanoshells are synthesized by a judicious multi-step templating strategy using carbon nanospheres as the starting material. Their architecture and composition allow these hierarchical FePO4 yolk–shell nanospheres to manifest excellent sodium storage performance as a cathode material for sodium-ion batteries.
Abstract
Amorphous iron phosphate (FePO4) has attracted enormous attention as a promising cathode material for sodium-ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi-step templating approach to skillfully craft amorphous FePO4 yolk–shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk–shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202008318-sup-0001-misc_information.pdf14.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013.
- 2C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, Angew. Chem. Int. Ed. 2020, 59, 264–269; Angew. Chem. 2020, 132, 270–275.
- 3X. Xiang, K. Zhang, J. Chen, Adv. Mater. 2015, 27, 5343–5364.
- 4P.-F. Wang, H. Xin, T.-T. Zuo, Q. Li, X. Yang, Y.-X. Yin, X. Gao, X. Yu, Y.-G. Guo, Angew. Chem. Int. Ed. 2018, 57, 8178–8183; Angew. Chem. 2018, 130, 8310–8315.
- 5M. Chen, W. Hua, J. Xiao, D. Cortie, X. Guo, E. Wang, Q. Gu, Z. Hu, S. Indris, X.-L. Wang, S.-L. Chou, S.-X. Dou, Angew. Chem. Int. Ed. 2020, 59, 2449–2456; Angew. Chem. 2020, 132, 2470–2477.
- 6S.-Y. Duan, J.-Y. Piao, T.-Q. Zhang, Y.-G. Sun, X.-C. Liu, A.-M. Cao, L.-J. Wan, NPG Asia Mater. 2017, 9, e414.
- 7Z. Zhang, Y. Han, J. Xu, J. Ma, X. Zhou, J. Bao, ACS Appl. Energy Mater. 2018, 1, 4395–4402.
- 8Y. Liu, Y. Xu, X. Han, C. Pellegrinelli, Y. Zhu, H. Zhu, J. Wan, A. C. Chung, O. Vaaland, C. Wang, L. Hu, Nano Lett. 2012, 12, 5664–5668.
- 9G. Yang, B. Ding, J. Wang, P. Nie, H. Dou, X. Zhang, Nanoscale 2016, 8, 8495–8499.
- 10Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Nano Lett. 2014, 14, 3539–3543.
- 11J. Kim, D.-H. Seo, H. Kim, I. Park, J.-K. Yoo, S.-K. Jung, Y.-U. Park, W. A. Goddard III, K. Kang, Energy Environ. Sci. 2015, 8, 540–545.
- 12X. Ren, K. Turcheniuk, D. Lewis, W. Fu, A. Magasinski, M. W. Schauer, G. Yushin, Small 2018, 14, 1703425.
- 13Y. Zhang, C. Huang, H. Min, H. Shu, P. Gao, Q. Liang, X. Yang, L. Liu, X. Wang, J. Alloys Compd. 2019, 795, 34–44.
- 14Y. Fang, D. Luan, Y. Chen, S. Gao, X. W. Lou, Angew. Chem. Int. Ed. 2020, 59, 7178–7183; Angew. Chem. 2020, 132, 7245–7250.
- 15X. Ge, S. Liu, M. Qiao, Y. Du, Y. Li, J. Bao, X. Zhou, Angew. Chem. Int. Ed. 2019, 58, 14578–14583; Angew. Chem. 2019, 131, 14720–14725.
- 16Y. Liu, X.-Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X. W. Lou, Joule 2018, 2, 725–735.
- 17Q. Liu, Z. Hu, Y. Liang, L. Li, C. Zou, H. Jin, S. Wang, H. Lu, Q. Gu, S.-L. Chou, Y. Liu, S.-X. Dou, Angew. Chem. Int. Ed. 2020, 59, 5159–5164; Angew. Chem. 2020, 132, 5197–5202.
- 18N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater. 2016, 28, 4126–4133.
- 19P. Liu, J. Han, K. Zhu, Z. Dong, L. Jiao, Adv. Energy Mater. 2020, 10, 2000741.
- 20C. Zhu, R. E. Usiskin, Y. Yu, J. Maier, Science 2017, 358, eaao2808.
- 21F. Tu, Y. Han, Y. Du, X. Ge, W. Weng, X. Zhou, J. Bao, ACS Appl. Mater. Interfaces 2019, 11, 2112–2119.
- 22X. M. Sun, Y. D. Li, Angew. Chem. Int. Ed. 2004, 43, 597–601; Angew. Chem. 2004, 116, 607–611.
- 23A. H. Van Pelt, O. A. Simakova, S. M. Schimming, J. L. Ewbank, G. S. Foo, E. A. Pidko, E. J. M. Hensen, C. Sievers, Carbon 2014, 77, 143–154.
- 24D.-C. Lee, L. V. Brownell, K. Jang, S. J. Han, K. A. Robins, Phys. Chem. Chem. Phys. 2015, 17, 2457–2463.
- 25L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, J. Am. Chem. Soc. 2019, 141, 7073–7080.
- 26X. Wang, J. He, B. Zhou, Y. Zhang, J. Wu, R. Hu, L. Liu, J. Song, J. Qu, Angew. Chem. Int. Ed. 2018, 57, 8668–8673; Angew. Chem. 2018, 130, 8804–8809.
- 27G. Li, F. Lu, X. Dou, X. Wang, D. Luo, H. Sun, A. Yu, Z. Chen, J. Am. Chem. Soc. 2020, 142, 3583–3592.
- 28Y. Liu, S. Xu, S. Zhang, J. Zhang, J. Fan, Y. Zhou, J. Mater. Chem. A 2015, 3, 5501–5508.
- 29Y.-G. Sun, J.-Y. Piao, L.-L. Hu, D.-S. Bin, X.-J. Lin, S.-Y. Duan, A.-M. Cao, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 9070–9073.
- 30W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng, L. Qiao, Z. Zhu, Z. Lv, Y. Zhang, X. Ge, S. Xi, Z. Wang, Y. Du, X. Chen, J. Am. Chem. Soc. 2019, 141, 14038–14042.
- 31Q.-C. Wang, J.-K. Meng, X.-Y. Yue, Q.-Q. Qiu, Y. Song, X.-J. Wu, Z.-W. Fu, Y.-Y. Xia, Z. Shadike, J. Wu, X.-Q. Yang, Y.-N. Zhou, J. Am. Chem. Soc. 2019, 141, 840–848.
- 32L. Shen, Y. Wang, F. Wu, I. Moudrakovski, P. A. van Aken, J. Maier, Y. Yu, Angew. Chem. Int. Ed. 2019, 58, 7238–7243; Angew. Chem. 2019, 131, 7316–7321.
- 33Q. Xia, Z. Lin, W. Lai, Y. Wang, C. Ma, Z. Yan, Q. Gu, W. Wei, J.-Z. Wang, Z. Zhang, H. K. Liu, S. X. Dou, S.-L. Chou, Angew. Chem. Int. Ed. 2019, 58, 14125–14128; Angew. Chem. 2019, 131, 14263–14266.
- 34T. Shiratsuchi, S. Okada, J. Yamaki, T. Nishida, J. Power Sources 2006, 159, 268–271.
- 35W. Yao, A. R. Armstrong, X. Zhou, M.-T. Sougrati, P. Kidkhunthod, S. Tunmee, C. Sun, S. Sattayaporn, P. Lightfoot, B. Ji, C. Jiang, N. Wu, Y. Tang, H.-M. Cheng, Nat. Commun. 2019, 10, 3483.
- 36H. Yu, Y. Liu, S. L. Brock, ACS Nano 2009, 3, 2000–2006.
- 37Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 2016, 55, 3408–3413; Angew. Chem. 2016, 128, 3469–3474.