Octacyanidorhenate(V) Ion as an Efficient Linker for Hysteretic Two-Step Iron(II) Spin Crossover Switchable by Temperature, Light, and Pressure
Corresponding Author
Dr. Szymon Chorazy
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorTomasz Charytanowicz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorDr. Dawid Pinkowicz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorJunhao Wang
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorDr. Koji Nakabayashi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorStephen Klimke
Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Franz Renz
Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Shin-ichi Ohkoshi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Barbara Sieklucka
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorCorresponding Author
Dr. Szymon Chorazy
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorTomasz Charytanowicz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorDr. Dawid Pinkowicz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorJunhao Wang
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorDr. Koji Nakabayashi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorStephen Klimke
Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Franz Renz
Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstrasse 9, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Shin-ichi Ohkoshi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Barbara Sieklucka
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
Search for more papers by this authorGraphical Abstract
Perfect rhenium mediator: Octacyanidorhenate(V) ion is presented as a promising molecular precursor for the construction of an advanced spin-crossover material linking a multistep spin transition with strong cooperativity. An anionic layered FeII-ReV cyanido-bridged framework non-covalently bonded to Cs+ counterions is reported. It exhibits a two-step hysteretic FeII spin-crossover effect controlled by temperature, light irradiation, and pressure.
Abstract
A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2][Re(CN)8]}⋅H2O (1) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII-ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+, [ReV(CN)8]3− ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202007327-sup-0001-cif.zip502.7 KB | Supplementary |
anie202007327-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277;
- 1bO. N. Risset, P. A. Quintero, T. V. Brinzari, M. J. Andrus, M. W. Lufaso, M. W. Meisel, D. R. Talham, J. Am. Chem. Soc. 2014, 136, 15660–15669;
- 1cA. Ueda, S. Yamada, T. Isono, H. Kamo, A. Nakao, R. Kumai, H. Nakao, Y. Murakami, K. Yamamoto, Y. Nishio, H. Mori, J. Am. Chem. Soc. 2014, 136, 12184–12192;
- 1dN. Ogihara, N. Ohba, Y. Kishida, Sci. Adv. 2017, 3, e1603103;
- 1eG. Molnár, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksou, Adv. Mater. 2018, 30, 1703862;
- 1fY. Xin, J. Wang, M. Zychowicz, J. J. Zakrzewski, K. Nakabayashi, B. Sieklucka, S. Chorazy, S. Ohkoshi, J. Am. Chem. Soc. 2019, 141, 18211–18220.
- 2
- 2aP. N. Martinho, B. Gildea, M. M. Harris, T. Lemma, A. D. Naik, H. Müller-Bunz, T. E. Keyes, Y. Garcia, G. G. Morgan, Angew. Chem. Int. Ed. 2012, 51, 12597–12601; Angew. Chem. 2012, 124, 12765–12769;
- 2bK. Bhar, S. Khan, J. Sanchez Costa, J. Ribas, O. Roubeau, P. Mitra, B. K. Ghosh, Angew. Chem. Int. Ed. 2012, 51, 2142–2145; Angew. Chem. 2012, 124, 2184–2187;
- 2cA. J. Fitzpatrick, E. Trzop, H. Müller-Bunz, M. M. Dirtu, Y. Garcia, E. Collet, G. G. Morgan, Chem. Commun. 2015, 51, 17540–17543;
- 2dW. Phonsri, P. Harding, L. Liu, S. G. Telfer, K. S. Murray, B. Moubaraki, T. M. Ross, G. N. L. Jameson, D. J. Harding, Chem. Sci. 2017, 8, 3949–3959;
- 2eJ. Weihermüller, S. Schlamp, W. Milius, F. Puchtler, J. Breu, P. Ramming, S. Hüttner, S. Agarwal, C. Göbel, M. Hund, G. Papastavrou, B. Weber, J. Mater. Chem. C 2019, 7, 1151–1163.
- 3
- 3aM. C. Muñoz, J. A. Real, Coord. Chem. Rev. 2011, 255, 2068–2093;
- 3bC. R. Gros, M. K. Peprah, B. D. Hosterman, T. V. Brinzari, P. A. Quintero, M. Sendova, M. W. Meisel, D. R. Talham, J. Am. Chem. Soc. 2014, 136, 9846–9849;
- 3cM. Estrader, J. Salinas Uber, L. A. Barrios, J. Garcia, L. Lloyd-Williams, O. Roubeau, S. J. Teat, G. Aromi, Angew. Chem. Int. Ed. 2017, 56, 15622–15627; Angew. Chem. 2017, 129, 15828–15833;
- 3dM. Paez-Espejo, M. Sy, K. Boukheddaden, J. Am. Chem. Soc. 2018, 140, 11954–11964;
- 3eY. Guo, S. Xue, M. M. Dirtu, Y. Garcia, J. Mater. Chem. C 2018, 6, 3895–3900;
- 3fT. Shiga, R. Saiki, L. Akiyama, R. Kumai, D. Natke, F. Renz, J. M. Cameron, G. N. Newton, H. Oshio, Angew. Chem. Int. Ed. 2019, 58, 5658–5662; Angew. Chem. 2019, 131, 5714–5718.
- 4
- 4aY.-S. Koo, J. R. Galan-Mascaros, Adv. Mater. 2014, 26, 6785–6789;
- 4bC. Lochenie, W. Bauer, A. P. Railliet, S. Schlamp, Y. Garcia, B. Weber, Inorg. Chem. 2014, 53, 11563–11572;
- 4cS. Brooker, Chem. Soc. Rev. 2015, 44, 2880–2892;
- 4dA. Holovchenko, J. Dugay, M. Gimenez-Marques, R. Torres-Cavanillas, E. Coronado, H. S. J. van der Zaant, Adv. Mater. 2016, 28, 7228–7233;
- 4eE. Tailleur, M. Marchivie, N. Daro, G. Chastanet, P. Guionneau, Chem. Commun. 2017, 53, 4763–4766;
- 4fT. Boonprab, S. J. Lee, S. G. Telfer, K. S. Murray, W. Phonsri, G. Chastanet, E. Collet, E. Trzop, G. N. L. Jameson, P. Harding, D. J. Harding, Angew. Chem. Int. Ed. 2019, 58, 11811–11815; Angew. Chem. 2019, 131, 11937–11941.
- 5
- 5aT. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami, H. Oshio, Nat. Commun. 2014, 5, 3865;
- 5bJ. Luan, J. Zhou, Z. Liu, B. Zhu, H. Wang, X. Bao, W. Liu, M.-L. Tong, G. Peng, H. Peng, L. Salmon, A. Bousseksou, Inorg. Chem. 2015, 54, 5145–5147;
- 5cM. Paez-Espejo, M. Sy, K. Boukheddaden, J. Am. Chem. Soc. 2016, 138, 3202–3210;
- 5dE. Trzop, D. Zhang, L. Pineiro-Lopez, F. J. Valverde-Munoz, M. Carmen-Munoz, L. Palatinus, L. Guerin, H. Cailleau, J. A. Real, E. Collet, Angew. Chem. Int. Ed. 2016, 55, 8675–8679; Angew. Chem. 2016, 128, 8817–8821;
- 5eW. Liu, Y.-Y. Peng, S.-G. Wu, Y.-C. Chen, M. N. Hoque, Z.-P. Ni, X.-M. Chen, M.-L. Tong, Angew. Chem. Int. Ed. 2017, 56, 14982–14986; Angew. Chem. 2017, 129, 15178–15182.
- 6
- 6aN. F. Sciortino, S. M. Neville, J.-F. Letard, B. Moubaraki, K. S. Murray, C. J. Kepert, Inorg. Chem. 2014, 53, 7886–7893;
- 6bE. Milin, V. Patinec, S. Triki, E.-E. Bendeif, S. Pillet, M. Marchivie, G. Chastanet, K. Boukheddaden, Inorg. Chem. 2016, 55, 11652–11661;
- 6cZ.-P. Ni, J.-L. Liu, M. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, M.-L. Tong, Coord. Chem. Rev. 2017, 335, 28–43;
- 6dB. R. Mullaney, L. Goux-Capes, D. J. Price, G. Chastanet, J.-F. Letard, C. J. Kepert, Nat. Commun. 2017, 8, 1053.
- 7
- 7aY. M. Klein, N. F. Sciortino, F. Ragon, C. E. Housecroft, C. J. Kepert, S. M. Neville, Chem. Commun. 2014, 50, 3838–3840;
- 7bM. Shatruk, H. Phan, B. A. Christosomo, A. Suleimanova, Coord. Chem. Rev. 2015, 289–290, 62–73;
- 7cJ. E. Clements, J. R. Price, S. M. Neville, C. J. Kepert, Angew. Chem. Int. Ed. 2016, 55, 15105–15109; Angew. Chem. 2016, 128, 15329–15333;
- 7dY. Meng, Q.-Q. Sheng, M. N. Hoque, Y.-C. Chen, S.-G. Wu, J. Tucek, R. Zboril, T. Liu, Z.-P. Ni, M.-L. Tong, Chem. Eur. J. 2017, 23, 10034–10037.
- 8
- 8aM. Ohba, K. Yoneda, G. Agusti, M. C. Munoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sasaki, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4767–4771; Angew. Chem. 2009, 121, 4861–4865;
- 8bL. Piñeiro-López, F. J. Valverde-Muñoz, M. Seredyuk, M. C. Muñoz, M. Haukka, J. A. Real, Inorg. Chem. 2017, 56, 7038–7047;
- 8cM. J. Murphy, K. A. Zenere, F. Ragon, P. D. Southon, C. J. Kepert, S. M. Neville, J. Am. Chem. Soc. 2017, 139, 1330–1335.
- 9
- 9aM. Arai, W. Kosaka, T. Matsuda, S. Ohkoshi, Angew. Chem. Int. Ed. 2008, 47, 6885–6887; Angew. Chem. 2008, 120, 6991–6993;
- 9bW. Kosaka, H. Tokoro, T. Matsuda, K. Hashimoto, S. Ohkoshi, J. Phys. Chem. C 2009, 113, 15751–15755;
- 9cS. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 2011, 3, 564–569;
- 9dS. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, Nat. Photonics 2014, 8, 65–71;
- 9eA. Mondal, Y. Li, L.-M. Chamoreau, M. Seuleiman, L. Rechignat, A. Bousseksou, M.-L. Boillot, R. Lescouëzec, Chem. Commun. 2014, 50, 2893–2895;
- 9fD. Pinkowicz, M. Rams, M. Misek, K. V. Kamenev, H. Tomkowiak, A. Katrusiak, B. Sieklucka, J. Am. Chem. Soc. 2015, 137, 8795–8802;
- 9gR.-M. Wei, M. Kong, F. Cao, J. Li, T.-C. Pu, L. Yang, X.-L. Zhang, Y. Song, Dalton Trans. 2016, 45, 18643–18652;
- 9hS. Kawabata, S. Chorazy, J. J. Zakrzewski, K. Imoto, T. Fujimoto, K. Nakabayashi, J. Stanek, B. Sieklucka, S. Ohkoshi, Inorg. Chem. 2019, 58, 6052–6063.
- 10
- 10aM. Arczyński, M. Rams, J. Stanek, M. Fitta, B. Sieklucka, K. R. Dunbar, D. Pinkowicz, Inorg. Chem. 2017, 56, 4021–4027;
- 10bM. Arczyński, J. Stanek, B. Sieklucka, K. R. Dunbar, D. Pinkowicz, J. Am. Chem. Soc. 2019, 141, 19067–19077.
- 11
- 11aK. Nakabayashi, S. Chorazy, D. Takahashi, T. Kinoshita, B. Sieklucka, S. Ohkoshi, Cryst. Growth Des. 2014, 14, 6093–6100;
- 11bY.-Z. Zhang, B. S. Dolinar, S. Liu, A. J. Brown, X. Zhang, Z.-X. Wang, K. R. Dunbar, Chem. Sci. 2018, 9, 119–124.
- 12
- 12aR. Podgajny, S. Chorazy, W. Nitek, M. Rams, A. M. Majcher, B. Marszałek, J. Żukrowski, C. Kapusta, B. Sieklucka, Angew. Chem. Int. Ed. 2013, 52, 896–900; Angew. Chem. 2013, 125, 930–934;
- 12bS. Chorazy, R. Podgajny, W. Nogaś, W. Nitek, M. Kozieł, M. Rams, E. Juszyńska-Gałązka, J. Żukrowski, C. Kapusta, K. Nakabayashi, T. Fujimoto, S. Ohkoshi, B. Sieklucka, Chem. Commun. 2014, 50, 3484–3487.
- 13
- 13aM. V. Bennett, J. R. Long, J. Am. Chem. Soc. 2003, 125, 2394–2395;
- 13bS. Chorazy, R. Podgajny, K. Nakabayashi, J. Stanek, M. Rams, B. Sieklucka, S. Ohkoshi, Angew. Chem. Int. Ed. 2015, 54, 5093–5097; Angew. Chem. 2015, 127, 5182–5186;
- 13cS. Chorazy, J. J. Stanek, J. Kobylarczyk, S. Ohkoshi, B. Sieklucka, R. Podgajny, Dalton Trans. 2017, 46, 8027–8036.
- 14Y. Arimoto, S. Ohkoshi, Z. J. Zhong, H. Seino, Y. Mizobe, K. Hashimoto, J. Am. Chem. Soc. 2003, 125, 9240–9241.
- 15
- 15aN. Ozaki, H. Tokoro, Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, S. Ohkoshi, Adv. Funct. Mater. 2012, 22, 2089–2093;
- 15bY.-S. Meng, O. Sato, T. Liu, Angew. Chem. Int. Ed. 2018, 57, 12216–12226; Angew. Chem. 2018, 130, 12394–12405.
- 16
- 16aS. Chorazy, T. Charytanowicz, A. M. Majcher, M. Reczyński, B. Sieklucka, Inorg. Chem. 2018, 57, 14039–14043;
- 16bM. Heine, L. Fink, M. U. Schmidt, CrystEngComm 2019, 21, 4305–4318.
- 17P. Gütlich, A. B. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 2013, 9, 342–391.
- 18
- 18aY. Garcia, V. Ksenofontov, G. Levchenko, G. Schmitt, P. Gütlich, J. Phys. Chem. B 2000, 104, 5045–5048;
- 18bP. Gütlich, V. Ksenofontov, A. B. Gaspar, Coord. Chem. Rev. 2005, 249, 1811–1829;
- 18cG. Agustí, A. B. Gaspar, M. C. Muñoz, J. A. Real, Inorg. Chem. 2007, 46, 9646–9654.
- 19
- 19aJ.-F. Létard, J. Mater. Chem. 2006, 16, 2550–2559;
- 19bT. Liu, H. Zheng, S. Kang, Y. Shiota, S. Hayami, M. Mito, O. Sato, K. Yoshizawa, S. Kanegawa, C. Duan, Nat. Commun. 2013, 4, 2826.