Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution
Gancheng Zuo
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorYuting Wang
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWei Liang Teo
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Aming Xie
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorYang Guo
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYuxuan Dai
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Weiqiang Zhou
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorDeblin Jana
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorProf. Qiming Xian
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Dong
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yanli Zhao
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorGancheng Zuo
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorYuting Wang
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWei Liang Teo
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Aming Xie
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorYang Guo
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYuxuan Dai
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Weiqiang Zhou
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorDeblin Jana
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorProf. Qiming Xian
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Dong
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yanli Zhao
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
Search for more papers by this authorGraphical Abstract
MXene nanosheets are used to support the in situ growth of ultrathin ZnIn2S4. The obtained sandwich-like hierarchical heterostructure could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation, exhibiting efficient photocatalytic H2 evolution performance and excellent stability.
Abstract
Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar-to-hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich-like hierarchical heterostructures (UZNs-MNs-UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202002136-sup-0001-misc_information.pdf1.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387–399;
- 1bS. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050;
- 1cQ. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611–615.
- 2
- 2aM. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 2016, 1, 16151;
- 2bS. Xiao, W. Dai, X. Liu, D. Pan, H. Zou, G. Li, G. Zhang, C. Su, D. Zhang, W. Chen, H. Li, Adv. Energy Mater. 2019, 9, 1900775.
- 3
- 3aY. Wang, H. Suzuki, J. Xie, Q. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 2018, 118, 5201–5241;
- 3bZ. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109–2125.
- 4
- 4aT. A. Shifa, F. Wang, Y. Liu, J. He, Adv. Mater. 2019, 31, 1804828;
- 4bY. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Chem. Rev. 2018, 118, 6409–6455.
- 5
- 5aW. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 6716–6720; Angew. Chem. 2016, 128, 6828–6832;
- 5bX. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 2017, 139, 7586–7594;
- 5cM. Q. Yang, Y. J. Xu, W. Lu, K. Zeng, H. Zhu, Q. H. Xu, G. W. Ho, Nat. Commun. 2017, 8, 14224;
- 5dS. Wang, B. Y. Guan, X. Wang, X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 15145–15148.
- 6
- 6aB. Xu, P. He, H. Liu, P. Wang, G. Zhou, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 2339–2343; Angew. Chem. 2014, 126, 2371–2375;
- 6bB. Lin, G. Yang, L. Wang, Angew. Chem. Int. Ed. 2019, 58, 4587–4591; Angew. Chem. 2019, 131, 4635–4639.
- 7
- 7aS. Wang, B. Y. Guan, Y. Lu, X. W. D. Lou, J. Am. Chem. Soc. 2017, 139, 17305–17308;
- 7bS. Wang, B. Y. Guan, X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 5037–5040.
- 8
- 8aM. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253;
- 8bB. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098;
- 8cK. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 2018, 30, 1804779;
- 8dP. Kuang, M. He, B. Zhu, J. Yu, K. Fan, M. Jaroniec, J. Catal. 2019, 375, 8–20.
- 9
- 9aH. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J. W. Chew, Adv. Mater. 2018, 30, 1704561;
- 9bJ. Peng, X. Chen, W. J. Ong, X. Zhao, N. Li, Chem 2019, 5, 18–50;
- 9cJ. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, S. Z. Qiao, Nat. Commun. 2017, 8, 13907.
- 10
- 10aS. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 2018, 28, 1800136;
- 10bT. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Appl. Catal. B 2018, 239, 545–554.
- 11B. Chai, T. Peng, P. Zeng, X. Zhang, X. Liu, J. Phys. Chem. C 2011, 115, 6149–6155.
- 12X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 2017, 29, 1607017.
- 13
- 13aM. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012, 6, 1322–1331;
- 13bZ. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen, Adv. Funct. Mater. 2019, 29, 1806500.
- 14J. Zhou, G. Tian, Y. Chen, X. Meng, Y. Shi, X. Cao, K. Pan, H. Fu, Chem. Commun. 2013, 49, 2237–2239.
- 15B. Wang, M. Wang, F. Liu, Q. Zhang, S. Yao, X. Liu, F. Huang, Angew. Chem. Int. Ed. 2020, 59, 1914–1918; Angew. Chem. 2020, 132, 1930–1934.
- 16T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297–3303.
- 17M. J. Bierman, S. Jin, Energy Environ. Sci. 2009, 2, 1050–1059.
- 18
- 18aJ. Di, C. Chen, C. Zhu, M. Ji, J. Xia, C. Yan, W. Hao, S. Li, H. Li, Z. Liu, Appl. Catal. B 2018, 238, 119–125;
- 18bJ. Di, X. Zhao, C. Lian, M. Ji, J. Xia, J. Xiong, W. Zhou, X. Cao, Y. She, H. Liu, K. P. Loh, S. J. Pennycook, H. Li, Z. Liu, Nano Energy 2019, 61, 54–59.
- 19
- 19aZ. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 2014, 136, 458–465;
- 19bS. Yu, Y. H. Kim, S. Y. Lee, H. D. Song, J. Yi, Angew. Chem. Int. Ed. 2014, 53, 11203–11207; Angew. Chem. 2014, 126, 11385–11389.
- 20
- 20aZ. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520–5551;
- 20bH. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234–5244.