Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production
Yuanjun Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shufang Ji
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Wenming Sun
College of Science, China Agricultural University, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Yongpeng Lei
State Key Laboratory of Powder Metallurgy & Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorQichen Wang
State Key Laboratory of Powder Metallurgy & Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDr. Ang Li
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024 China
Search for more papers by this authorDr. Wenxing Chen
Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Gang Zhou
School of Science, Hubei University of Technology, Wuhan, 430068 China
Search for more papers by this authorZedong Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yu Wang
Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorDr. Qinghua Zhang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Lin Gu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Xiaodong Han
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYuanjun Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shufang Ji
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Wenming Sun
College of Science, China Agricultural University, Beijing, 100193 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Yongpeng Lei
State Key Laboratory of Powder Metallurgy & Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorQichen Wang
State Key Laboratory of Powder Metallurgy & Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDr. Ang Li
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024 China
Search for more papers by this authorDr. Wenxing Chen
Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Gang Zhou
School of Science, Hubei University of Technology, Wuhan, 430068 China
Search for more papers by this authorZedong Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yu Wang
Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Search for more papers by this authorDr. Qinghua Zhang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Lin Gu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Xiaodong Han
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100024 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
Single Pt atoms assembled on a defective TiO2 support (Pt1/def-TiO2) as a highly efficient photocatalyst serve as proton reduction sites and promote the neighboring TiO2 units to generate surface oxygen vacancies, leading to the formation of an atomic interface between the isolated Pt atom and Ti3+ defects. This unique structure endows Pt1/def-TiO2 with excellent photocatalytic hydrogen production performance.
Abstract
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def-TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt-O-Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt-O-Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def-TiO2 exhibit a record-level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h−1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201912439-sup-0001-misc_information.pdf4.4 MB | Supplementary |
anie201912439-sup-0001-Movie_S1.mp428 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev. 2012, 112, 1555–1614;
- 1bY. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511;
- 1cT. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535;
- 1dJ. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Norskov, Nat. Mater. 2016, 16, 70–81;
- 1eT.-T. Zhuang, Y. Liu, M. Sun, S.-L. Jiang, M.-W. Zhang, X.-C. Wang, Q. Zhang, J. Jiang, S.-H. Yu, Angew. Chem. Int. Ed. 2015, 54, 11495–11500; Angew. Chem. 2015, 127, 11657–11662;
- 1fR. Chen, Z.-H. Yan, X.-J. Kong, L.-S. Long, L.-S. Zheng, Angew. Chem. Int. Ed. 2018, 57, 16796–16800; Angew. Chem. 2018, 130, 17038–17042.
- 2
- 2aA. Fujishima, K. Honda, Nature 1972, 238, 37–38;
- 2bA. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735–758;
- 2cX. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746–750;
- 2dH. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, G. Thornton, Nat. Mater. 2017, 16, 461–466.
- 3
- 3aY. Qu, X. Duan, Chem. Soc. Rev. 2013, 42, 2568–2580;
- 3bJ. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.
- 4
- 4aX. Chen, L. Liu, F. Huang, Chem. Soc. Rev. 2015, 44, 1861–1885;
- 4bF. Xiao, W. Zhou, B. Sun, H. Li, P. Qiao, L. Ren, X. Zhao, H. Fu, Sci. China Mater. 2018, 61, 822–830;
- 4cB. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater. 2019, 18, 620–626.
- 5
- 5aR. Marschall, Adv. Funct. Mater. 2014, 24, 2421–2440;
- 5bH. Zhang, J. Cai, Y. Wang, M. Wu, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, Z. Jiang, J. Gong, Appl. Catal. B 2018, 220, 126–136.
- 6
- 6aM. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 2011, 133, 16414–16417;
- 6bY. C. Zhang, N. Afzal, L. Pan, X. Zhang, J. J. Zou, Adv. Sci. 2019, 6, 1900053;
- 6cX. Pan, M. Q. Yang, X. Fu, N. Zhang, Y. J. Xu, Nanoscale 2013, 5, 3601–3614.
- 7
- 7aR. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan, C. Li, Nat. Energy 2018, 3, 655–663;
- 7bJ. Huang, Q. Shang, Y. Huang, F. Tang, Q. Zhang, Q. Liu, S. Jiang, F. Hu, W. Liu, Y. Luo, T. Yao, Y. Jiang, Z. Pan, Z. Sun, S. Wei, Angew. Chem. Int. Ed. 2016, 55, 2137–2141; Angew. Chem. 2016, 128, 2177–2181.
- 8
- 8aJ. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909;
- 8bJ. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787–7812.
- 9
- 9aX. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 2603–2636;
- 9bH. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, Adv. Funct. Mater. 2015, 25, 998–1013;
- 9cY.-Y. Ma, Z.-L. Lang, L.-K. Yan, Y.-H. Wang, H.-Q. Tan, K. Feng, Y.-J. Xia, J. Zhong, Y. Liu, Z.-H. Kang, Y.-G. Li, Energy Environ. Sci. 2018, 11, 2114–2123.
- 10
- 10aY. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242–1264;
- 10bY.-X. Zhao, M.-M. Wang, Y. Zhang, X.-L. Ding, S.-G. He, Angew. Chem. Int. Ed. 2019, 58, 8002–8006; Angew. Chem. 2019, 131, 8086–8090;
- 10cA. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81;
- 10dT. Sun, L. Xu, D. Wang, Y. Li, Nano Res. 2019, https://doi.org/10.1007/s12274-019-2345-2344;
- 10eT. Li, F. Liu, Y. Tang, L. Li, S. Miao, Y. Su, J. Zhang, J. Huang, H. Sun, M. Haruta, A. Wang, B. Qiao, J. Li, T. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7795–7799; Angew. Chem. 2018, 130, 7921–7925;
- 10fH. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Angew. Chem. Int. Ed. 2016, 55, 14310–14314; Angew. Chem. 2016, 128, 14522–14526.
- 11R. Prins, Chem. Rev. 2012, 112, 2714–2738.
- 12P. Scheiber, M. Fidler, O. Dulub, M. Schmid, U. Diebold, W. Hou, U. Aschauer, A. Selloni, Phys. Rev. Lett. 2012, 109, 136103.
- 13
- 13aJ. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Appl. Catal. B 2017, 206, 300–307;
- 13bG. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L.-M. Liu, Y. Li, Nat. Commun. 2018, 9, 1302.
- 14
- 14aB. J. Morgan, G. W. Watson, J. Phys. Chem. C 2010, 114, 2321–2328;
- 14bU. Aschauer, Y. He, H. Cheng, S.-C. Li, U. Diebold, A. Selloni, J. Phys. Chem. C 2010, 114, 1278–1284;
- 14cW. E. Kaden, T. Wu, W. A. Kunkel, S. L. Anderson, Science 2009, 326, 826–829.
- 15
- 15aM. Setvin, U. Aschauer, P. Scheiber, Y. F. Li, W. Hou, M. Schmid, A. Selloni, U. Diebold, Science 2013, 341, 988–991;
- 15bX. Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 2008, 130, 370–381;
- 15cH. Cheng, A. Selloni, Phys. Rev. B 2009, 79, 092101.
- 16
- 16aJ. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J 23–J26;
- 16bH. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339–348;
- 16cJ. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985–992.
- 17
- 17aJ. Mao, C.-T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 4958;
- 17bY. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174–16181.