Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst
Dr. Song Liu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorProf. Hong Bin Yang
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Sung-Fu Hung
Department of Chemistry, National (Taiwan) University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
Search for more papers by this authorJie Ding
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorWeizheng Cai
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorLinghui Liu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing, 400044 P. R. China
Search for more papers by this authorDr. Jiajian Gao
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Xuning Li
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorXinyi Ren
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhichong Kuang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Yanqiang Huang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorProf. Tao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Bin Liu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Song Liu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorProf. Hong Bin Yang
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Sung-Fu Hung
Department of Chemistry, National (Taiwan) University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
Search for more papers by this authorJie Ding
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorWeizheng Cai
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorLinghui Liu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing, 400044 P. R. China
Search for more papers by this authorDr. Jiajian Gao
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDr. Xuning Li
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorXinyi Ren
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhichong Kuang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Yanqiang Huang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorProf. Tao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Bin Liu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
Search for more papers by this authorDedicated to Dalian Institute of Chemical Physics on the occasion of its 70th anniversary
Graphical Abstract
Abstract
Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2RR was determined to be *CO2−+H+→*COOH. This study tackles the four challenges faced by the CO2RR; namely, activity, selectivity, stability, and dynamics.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201911995-sup-0001-misc_information.pdf3.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140–147;
- 1bS. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213;
- 1cJ. Li, G. Chen, Y. Zhu, Z. Liang, A. Pei, C.-L. Wu, H. Wang, H. R. Lee, K. Liu, S. Chu, Y. Cui, Nat. Catal. 2018, 1, 592–600;
- 1dC. Xia, P. Zhu, Q. Jiang, Y. Pan, W. T. Liang, E. Stavitsk, H. N. Alshareef, H. T. Wang, Nat. Energy 2019, 4, 776–785.
- 2
- 2aD. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley, N. Touati, S. Zanna, D. Taverna, L. H. Galvao Tizei, A. Zitolo, F. Jaouen, V. Mougel, M. Fontecave, Angew. Chem. Int. Ed. 2019, 58, 15098–15103; Angew. Chem. 2019, 131, 15242–15247;
- 2bJ. Jiao, R. Lin, S. Liu, W. C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S. F. Hung, H. M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nat. Chem. 2019, 11, 222–228.
- 3
- 3aS. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Adv. Funct. Mater. 2018, 28, 1800499;
- 3bH. Wang, J. Jia, P. Song, Q. Wang, D. Li, S. Min, C. Qian, L. Wang, Y. F. Li, C. Ma, T. Wu, J. Yuan, M. Antonietti, G. A. Ozin, Angew. Chem. Int. Ed. 2017, 56, 7847–7852; Angew. Chem. 2017, 129, 7955–7960;
- 3cK. Jiang, H. T. Wang, Chem 2018, 4, 194–195.
- 4
- 4aD. Kim, C. S. Kley, Y. Li, P. Yang, Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565;
- 4bD. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Nat. Commun. 2014, 5, 4948;
- 4cY. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. H. Sargent, Nat. Chem. 2018, 10, 974–980.
- 5
- 5aC. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504–507;
- 5bS. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68–71.
- 6
- 6aM. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, A. Salehi-Khojin, Nat. Commun. 2014, 5, 4470;
- 6bM. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss, A. Salehi-Khojin, Science 2016, 353, 467–470;
- 6cT.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C. T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E. H. Sargent, Nat. Catal. 2018, 1, 421–428.
- 7T. Zheng, K. Jiang, H. Wang, Adv. Mater. 2018, 30, 1802066.
- 8
- 8aA. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81;
- 8bB. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641;
- 8cX. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889–14892;
- 8dC. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 8078–8081;
- 8eY. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218–4221;
- 8fX. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 1944–1948; Angew. Chem. 2018, 130, 1962–1966;
- 8gC. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang, X. Bao, Energy Environ. Sci. 2018, 11, 1204–1210;
- 8hT. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Joule 2019, 3, 265–278;
- 8iX. Zu, X. Li, W. Liu, Y. Sun, J. Xu, T. Yao, W. Yan, S. Gao, C. Wang, S. Wei, Y. Xie, Adv. Mater. 2019, 31, 1808135;
- 8jW. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao, Angew. Chem. Int. Ed. 2019, 58, 6972–6976; Angew. Chem. 2019, 131, 7046–7050;
- 8kK. Jiang, S. Siahrostami, T. T. Zheng, Y. F. Hu, S. Hwang, E. Stavitski, Y. D. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. T. Wang, Energy Environ. Sci. 2018, 11, 893–903;
- 8lJ. Gu, C. S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091–1094.
- 9
- 9aB. N. Achar, G. M. Fohlen, J. A. Parker, J. Keshavayya, Polyhedron 1987, 6, 1463–1467;
- 9bS. V. Kudrevich, H. Ali, J. E. van Lier, J. Chem. Soc. Perkin Trans. 1 1994, 19, 2767–2774.
- 10
- 10aX. Zhou, D. Micheroni, Z. Lin, C. Poon, Z. Li, W. Lin, ACS Appl. Mater. Interfaces 2016, 8, 4192–4198;
- 10bX. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
- 10cJ.-H. Yang, Y. Gao, W. Zhang, P. Tang, J. Tan, A.-H. Lu, D. Ma, J. Phys. Chem. C 2013, 117, 3785–3788;
- 10dY. Gao, S. Li, X. Wang, R. Zhang, G. Zhang, Y. Zheng, J. Zhao, J. Electroanal. Chem. 2017, 791, 75–82.
- 11J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour, J. Am. Chem. Soc. 2001, 123, 6536–6542.
- 12
- 12aG. Polzonetti, V. Carravetta, G. Iucci, A. Ferri, G. Paolucci, A. Goldoni, P. Parent, C. Laffon, M. V. Russo, Chem. Phys. 2004, 296, 87–100;
- 12bJ. Stöhr, NEXAFS Spectroscopy, Springer-Verlag Berlin Heidelberg, Berlin, 1992.
10.1007/978-3-662-02853-7 Google Scholar
- 13
- 13aV. Y. Aristov, O. V. Molodtsova, V. Maslyuk, D. V. Vyalikh, V. M. Zhilin, Y. A. Ossipyan, T. Bredow, I. Mertig, M. Knupfer, Appl. Surf. Sci. 2007, 254, 20–25;
- 13bD. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y. Hu, P. Du, R. Si, J. Wang, X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F. Yang, P. N. Duchesne, P. Zhang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao, Sci. Adv. 2015, 1, e1500462;
- 13cJ. S. Stevens, C. R. Seabourne, C. Jaye, D. A. Fischer, A. J. Scott, S. L. Schroeder, J. Phys. Chem. B 2014, 118, 12121–12129.
- 14
- 14aD. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 2013, 52, 371–375; Angew. Chem. 2013, 125, 389–393;
- 14bC. Liu, K. S. Kim, J. Baek, Y. Cho, S. Han, S. W. Kim, N. K. Min, Y. Choi, J. U. Kim, C. J. Lee, Carbon 2009, 47, 1158–1164;
- 14cA. Imbrogno, R. Pandiyan, M. Barberio, A. Macario, A. Bonanno, M. A. El khakani, Mater. Renewable Sustainable Energy 2017, 6, 11;
- 14dX. Li, W. Liu, M. Zhang, Y. Zhong, Z. Weng, Y. Mi, Y. Zhou, M. Li, J. J. Cha, Z. Tang, H. Jiang, X. Li, H. Wang, Nano Lett. 2017, 17, 2057–2063.
- 15P. A. Christensen, A. Hamnett, A. V. G. Muir, J. Electroanal. Chem. Interfacial Electrochem. 1988, 241, 361–371.
- 16
- 16aI. M. Bell, R. J. H. Clark, P. J. Gibbs, Spectrochim. Acta Part A 1997, 53, 2159–2179;
- 16bD. Masheder, K. P. J. Williams, J. Raman Spectrosc. 1987, 18, 391–398;
- 16cS. A. Krasnikov, A. B. Preobrajenski, N. N. Sergeeva, M. M. Brzhezinskaya, M. A. Nesterov, A. A. Cafolla, M. O. Senge, A. S. Vinogradov, Chem. Phys. 2007, 332, 318–324.
- 17Z. Liu, Z.-X. Chen, B. Jin, X. Zhang, Vib. Spectrosc. 2011, 56, 210–218.
- 18Z.-Q. Tian, B. Ren, D.-Y. Wu, J. Phys. Chem. B 2002, 106, 9463–9483.
- 19S. Maree, T. J. Nyokong, Electroanal. Chem. 2000, 492, 120–127.