Unraveling Dual Aggregation-Induced Emission Behavior in Steric-Hindrance Photochromic System for Super Resolution Imaging
Hong Yang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Mengqi Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chong Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorDr. Qianfu Luo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Dr. Ming-Qiang Zhu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Hong Zhu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorHong Yang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Mengqi Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chong Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorDr. Qianfu Luo
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorProf. Dr. Ming-Qiang Zhu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Hong Zhu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
Dual AIE behavior: The steric-hindrance photochromic system efficiently regulates the intramolecular rotational/vibrational magnitude and intermolecular stacking to tune aggregation-induced emission (AIE) activity. The off-to-on fluorescent photoswitch is successfully established in super resolution imaging.
Abstract
Unprecedented dual aggregation-induced emission (AIE) behavior based on a steric-hindrance photochromic system is presented, with incorporation one or two bulky aryl groups, resulting in different flexibleness. The dual AIE behavior of open and closed isomers can be explained by restriction of intramolecular rotation (RIR), restriction of intramolecular vibration (RIV), and intermolecular stacking. The large bulky benzothiophene causes restricted rotation, enhancing the emission of open form in solution and weak π–π molecular packing, thereby efficiently enhancing the luminescence performance in the solid state. With incorporation of two large bulky benzothiophene groups, BBTE possesses the most outstanding AIE activity, undergoing highly efficient and reversible off-to-on fluorescence in film upon alternating UV and visible light irradiation along with excellent fatigue resistance. The off-to-on fluorescent photoswitch is successfully established in super resolution imaging.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201909830-sup-0001-misc_information.pdf6.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740–1741.
- 2
- 2aZ. Wang, J. Nie, W. Qin, Q. Hu, B. Z. Tang, Nat. Commun. 2016, 7, 12033–12040;
- 2bH. Qian, M. E. Cousins, E. H. Horak, A. Wakefield, M. D. Liptak, I. Aprahamian, Nat. Chem. 2016, 9, 83;
- 2cY. Chen, W. Zhang, Z. Zhao, Y. Cai, J. Gong, R. T. K. Kwok, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 5011–5015; Angew. Chem. 2018, 130, 5105–5109;
- 2dB. Gu, K.-T. Yong, B. Liu, Small Methods 2018, 2, 1700392;
- 2eL. Zong, H. Zhang, Y. Li, Y. Gong, D. Li, J. Wang, Z. Wang, Y. Xie, M. Han, Q. Peng, X. Li, J. Dong, J. Qian, Q. Li, Z. Li, ACS Nano 2018, 12, 9532–9540;
- 2fY. Ai, Y. Li, H. L.-K. Fu, A. K.-W. Chan, V. W.-W. Yam, Chem. Eur. J. 2019, 25, 5251–5258;
- 2gZ. Jiang, X. Wang, J. Ma, Z. Liu, Sci. China Chem. 2019, 62, 355–362;
- 2hX. Ni, X. Zhang, X. Duan, H.-L. Zheng, X.-S. Xue, D. Ding, Nano Lett. 2019, 19, 318–330;
- 2iB. Z. Tang, Z. Zhao, A. Qin, Acta Chim. Sin. 2016, 74, 857–858.
- 3
- 3aZ. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao, H. Tian, Adv. Funct. Mater. 2007, 17, 3799–3807;
- 3bZ. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22, 23726–23740;
- 3cN. Aizawa, C.-J. Tsou, I. S. Park, T. Yasuda, Polym. J. 2016, 49, 197–202;
- 3dK. Matsuoka, K. Albrecht, K. Yamamoto, K. Fujita, Sci. Rep. 2017, 7, 41780–41788;
- 3eH. Ding, J. Li, G. Xie, G. Lin, R. Chen, Z. Peng, C. Yang, B. Wang, J. Sun, C. Wang, Nat. Commun. 2018, 9, 5234–5240.
- 4
- 4aJ. Qian, B. Z. Tang, Chem 2017, 3, 56–91;
- 4bB. Gu, W. Wu, G. Xu, G. Feng, F. Yin, P. H. J. Chong, J. Qu, K.-T. Yong, B. Liu, Adv. Mater. 2017, 29, 1701076;
- 4cJ. Qi, C. Chen, X. Zhang, X. Hu, S. Ji, R. T. K. Kwok, J. W. Y. Lam, D. Ding, B. Z. Tang, Nat. Commun. 2018, 9, 1848–1859;
- 4dG. Feng, B. Liu, Acc. Chem. Res. 2018, 51, 1404–1414;
- 4eX. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem. Int. Ed. 2018, 57, 11522–11531; Angew. Chem. 2018, 130, 11694–11704.
- 5
- 5aH. Zhu, J. Fan, M. Li, J. Cao, J. Wang, X. Peng, Chem. Eur. J. 2014, 20, 4691–4696;
- 5bS. Kim, T. Tachikawa, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 2014, 136, 11707–11715;
- 5cS. Liu, Y. Cheng, H. Zhang, Z. Qiu, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 6274–6278; Angew. Chem. 2018, 130, 6382–6386.
- 6
- 6aY. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang, K. S. Wong, J. Phys. Chem. B 2005, 109, 1135–1140;
- 6bJ. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429–5479;
- 6cJ. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 7
- 7aH. Tong, Y. Dong, Y. Hong, M. Häussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J. Sun, I. D. Williams, H. S. Kwok, B. Z. Tang, J. Phys. Chem. C 2007, 111, 2287–2294;
- 7bY. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 4332–4353;
- 7cR. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845–15853.
- 8
- 8aC.-X. Yuan, X.-T. Tao, Y. Ren, Y. Li, J.-X. Yang, W.-T. Yu, L. Wang, M.-H. Jiang, J. Phys. Chem. C 2007, 111, 12811–12816;
- 8bZ. Zhao, X. Zheng, L. Du, Y. Xiong, W. He, X. Gao, C. Li, Y. Liu, B. Xu, J. Zhang, F. Song, Y. Yu, X. Zhao, Y. Cai, X. He, R. T. K. Kwok, J. W. Y. Lam, X. Huang, D. Lee Phillips, H. Wang, B. Z. Tang, Nat. Commun. 2019, 10, 2952.
- 9
- 9aS. J. Lim, B. K. An, S. D. Jung, M. A. Chung, S. Y. Park, Angew. Chem. Int. Ed. 2004, 43, 6346–6350; Angew. Chem. 2004, 116, 6506–6510;
- 9bW. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114–6178;
- 9cJ. Su, T. Fukaminato, J.-P. Placial, T. Onodera, R. Suzuki, H. Oikawa, A. Brosseau, F. Brisset, R. Pansu, K. Nakatani, R. Métivier, Angew. Chem. Int. Ed. 2016, 55, 3662–3666; Angew. Chem. 2016, 128, 3726–3730;
- 9dS. Chen, W. Li, X. Li, W.-H. Zhu, J. Mater. Chem. C 2017, 5, 2717–2722;
- 9eB. Roubinet, M. Weber, H. Shojaei, M. Bates, M. L. Bossi, V. N. Belov, M. Irie, S. W. Hell, J. Am. Chem. Soc. 2017, 139, 6611–6620;
- 9fQ. Qi, C. Li, X. Liu, S. Jiang, Z. Xu, R. Lee, M. Zhu, B. Xu, W. Tian, J. Am. Chem. Soc. 2017, 139, 16036–16039;
- 9gO. Nevskyi, D. Sysoiev, J. Dreier, S. C. Stein, A. Oppermann, F. Lemken, T. Janke, J. Enderlein, I. Testa, T. Huhn, D. Wöll, Small 2018, 14, 1703333;
- 9hE. Siemes, O. Nevskyi, D. Sysoiev, S. K. Turnhoff, A. Oppermann, T. Huhn, W. Richtering, D. Wöll, Angew. Chem. Int. Ed. 2018, 57, 12280–12284; Angew. Chem. 2018, 130, 12460–12464.
- 10
- 10aK. Uno, H. Niikura, M. Morimoto, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 2011, 133, 13558–13564;
- 10bT. C. S. Pace, V. Müller, S. Li, P. Lincoln, J. Andréasson, Angew. Chem. Int. Ed. 2013, 52, 4393–4396; Angew. Chem. 2013, 125, 4489–4492;
- 10cR. Göstl, S. Hecht, Angew. Chem. Int. Ed. 2014, 53, 8784–8787; Angew. Chem. 2014, 126, 8929–8932;
- 10dN. Maeda, T. Hirose, K. Matsuda, Angew. Chem. Int. Ed. 2017, 56, 2371–2375; Angew. Chem. 2017, 129, 2411–2415;
- 10eC. Jurissek, F. Berger, F. Eisenreich, M. Kathan, S. Hecht, Angew. Chem. Int. Ed. 2019, 58, 1945–1949; Angew. Chem. 2019, 131, 1965–1969.
- 11
- 11aJ. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535–1546;
- 11bN. B. Shustova, B. D. McCarthy, M. Dincă, J. Am. Chem. Soc. 2011, 133, 20126–20129;
- 11cR. Hu, C. F. Gomez-Duran, J. W. Lam, J. L. Belmonte-Vazquez, C. Deng, S. Chen, R. Ye, E. Pena-Cabrera, Y. Zhong, K. S. Wong, B. Z. Tang, Chem. Commun. 2012, 48, 10099–10101.
- 12
- 12aJ. Luo, K. Song, F. L. Gu, Q. Miao, Chem. Sci. 2011, 2, 2029–2034;
- 12bN. L. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Lam, B. Z. Tang, Chem. Eur. J. 2014, 20, 15349–15353.
- 13
- 13aR. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck, Nature 1999, 397, 121–128;
- 13bX. Zhang, D. Görl, V. Stepanenko, F. Würthner, Angew. Chem. Int. Ed. 2014, 53, 1270–1274; Angew. Chem. 2014, 126, 1294–1298;
- 13cC. Li, H. Yan, L.-X. Zhao, G.-F. Zhang, Z. Hu, Z.-L. Huang, M.-Q. Zhu, Nat. Commun. 2014, 5, 5709.
- 14
- 14aW. Zhu, Y. Yang, R. Metivier, Q. Zhang, R. Guillot, Y. Xie, H. Tian, K. Nakatani, Angew. Chem. Int. Ed. 2011, 50, 10986–10990; Angew. Chem. 2011, 123, 11178–11182;
- 14bW. Li, C. Jiao, X. Li, Y. Xie, K. Nakatani, H. Tian, W. Zhu, Angew. Chem. Int. Ed. 2014, 53, 4603–4607; Angew. Chem. 2014, 126, 4691–4695.
- 15
- 15aS. Nakamura, M. Irie, J. Org. Chem. 1988, 53, 6136–6138;
- 15bM. Irie, Chem. Rev. 2000, 100, 1685–1716.
- 16M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277.
- 17K. S. Wong, H. Wang, G. Lanzani, Chem. Phys. Lett. 1998, 288, 59–64.
- 18 CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 75th ed. ), CRC, Boca Raton, 1994, pp. 6-241–6-245.
- 19T. Morozumi, T. Anada, H. Nakamura, J. Phys. Chem. B 2001, 105, 2923–2931.
- 20H. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, Y. Wang, Adv. Mater. 2006, 18, 2369–2372.
- 21
- 21aA. M. Braun, W. B. Hammond, H. G. Cassidy, J. Am. Chem. Soc. 1969, 91, 6196–6198;
- 21bT. R. Evans, J. Am. Chem. Soc. 1971, 93, 2081–2082.
- 22
- 22aM. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–795;
- 22bS. W. Hell, Science 2007, 316, 1153;
- 22cB. Roubinet, M. L. Bossi, P. Alt, M. Leutenegger, H. Shojaei, S. Schnorrenberg, S. Nizamov, M. Irie, V. N. Belov, S. W. Hell, Angew. Chem. Int. Ed. 2016, 55, 15429–15433; Angew. Chem. 2016, 128, 15655–15659;
- 22dW. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, E. Betzig, Nat. Methods 2016, 13, 359–365;
- 22eZ. Ye, H. Yu, W. Yang, Y. Zheng, N. Li, H. Bian, Z. Wang, Q. Liu, Y. Song, M. Zhang, Y. Xiao, J. Am. Chem. Soc. 2019, 141, 6527–6536.
- 23
- 23aJ. Zhu, R. C. Hayward, J. Am. Chem. Soc. 2008, 130, 7496–7502;
- 23bJ. Yan, L. X. Zhao, C. Li, Z. Hu, G. F. Zhang, Z. Q. Chen, T. Chen, Z. L. Huang, J. Zhu, M. Q. Zhu, J. Am. Chem. Soc. 2015, 137, 2436–2439.