Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities
Meng Zhao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chmeical Reaction Engieering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Hong-Jie Peng
Beijing Key Laboratory of Green Chmeical Reaction Engieering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Hong Yuan
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorJun-Yu Wei
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorMeng Zhao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chmeical Reaction Engieering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Hong-Jie Peng
Beijing Key Laboratory of Green Chmeical Reaction Engieering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Hong Yuan
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorJun-Yu Wei
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jia-Qi Huang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li–S battery design and engineering are discussed.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201909339-sup-0001-misc_information.pdf207.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935; C. Xia, C. Y. Kwok, L. F. Nazar, Science 2018, 361, 777–781; M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
- 2J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Norskov, Nat. Mater. 2017, 16, 70–81; P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 172–172.
- 3Y. Y. Liu, Y. Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540–550.
- 4J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. H. Yang, X. Q. Yang, J. G. Zhang, Nat. Energy 2019, 4, 180–186.
- 5R. Van Noorden, Nature 2013, 498, 416;
Y. Li, F. Chen, Nat. Energy 2017, 2, 17096;
N. P. Yao, L. A. Heredy, R. C. Saunders, J. Electrochem. Soc. 1970, 117, C247;
A. Manthiram, Y. Z. Fu, S. H. Chung, C. X. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751–11787;
M. Wild, G. Offer, Lithium-Sulfur Batteries, Wiley-VCH, Weinheim, 2019.
10.1002/9781119297895 Google Scholar
- 6H. F. Shi, W. Lv, C. Zhang, D. W. Wang, G. W. Ling, Y. B. He, F. Y. Kang, Q. H. Yang, Adv. Funct. Mater. 2018, 28, 1800508.
- 7X. J. Fan, W. W. Sun, F. C. Meng, A. M. Xing, J. H. Liu, Green Energy Environ. 2018, 3, 2–19.
- 8Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
- 9X. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500–506; U.S. Patent, Y. V. Mikhaylik, 7 352 680, 2008; L. Borchardt, M. Oschatz, S. Kaskel, Chem. Eur. J. 2016, 22, 7324–7351; Y. L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112–1119; Y. Yao, W. L. Feng, M. L. Chen, X. W. Zhong, X. J. Wu, H. B. Zhang, Y. Yu, Small 2018, 14, 1802516; Y. Y. Mi, W. Liu, Q. Wang, J. B. Jiang, G. W. Brudvig, H. H. Zhou, H. L. Wang, J. Mater. Chem. A 2017, 5, 11788–11793; H. Q. Wang, W. C. Zhang, J. Z. Xu, Z. P. Guo, Adv. Funct. Mater. 2018, 28, 1801791.
- 10S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547–6553; J. B. Zhou, X. J. Liu, L. Q. Zhu, J. Zhou, Y. Guan, L. Chen, S. W. Niu, J. Y. Cai, D. Sun, Y. C. Zhu, J. Du, G. M. Wang, Y. T. Qian, Joule 2018, 2, 2681–2693.
- 11Q. Pang, L. F. Nazar, ACS Nano 2016, 10, 4111–4118; W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu, Y. Qian, Adv. Funct. Mater. 2018, 28, 1704865.
- 12P. Han, S. H. Chung, A. Manthiram, Small 2019, 15, 1900690; D. R. Deng, F. Xue, C. D. Bai, J. Lei, R. M. Yuan, M. S. Zheng, Q. F. Dong, ACS Nano 2018, 12, 11120–11129; D. R. Deng, F. Xue, Y. J. Jia, J. C. Ye, C. D. Bai, M. S. Zheng, Q. F. Dong, ACS Nano 2017, 11, 6031–6039.
- 13S. Thieme, J. Brückner, A. Meier, I. Bauer, K. Gruber, J. Kaspar, A. Helmer, H. Althues, M. Schmuck, S. Kaskel, J. Mater. Chem. A 2015, 3, 3808–3820.
- 14S. H. Chung, C. H. Chang, A. Manthiram, Adv. Funct. Mater. 2018, 28, 1801188; M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maca, D. Gerber, J. Tubke, Adv. Energy Mater. 2015, 5, 1401986.
- 15A. Jozwiuk, B. B. Berkes, T. Weiss, H. Sommer, J. Janek, T. Brezesinski, Energy Environ. Sci. 2016, 9, 2603–2608; X. B. Cheng, J. Q. Huang, H. J. Peng, J. Q. Nie, X. Y. Liu, Q. Zhang, F. Wei, J. Power Sources 2014, 253, 263–268.
- 16D. P. Lv, J. M. Zheng, Q. Y. Li, X. Xie, S. Ferrara, Z. M. Nie, L. B. Mehdi, N. D. Browning, J. G. Zhang, G. L. Graff, J. Liu, J. Xiao, Adv. Energy Mater. 2015, 5, 1402290.
- 17D. Eroglu, K. R. Zavadil, K. G. Gallagher, J. Electrochem. Soc. 2015, 162, A982–A990.
- 18M. A. Pope, I. A. Aksay, Adv. Energy Mater. 2015, 5, 1500124.
- 19T. Cleaver, P. Kovacik, M. Marinescu, T. Zhang, G. J. Offer, J. Electrochem. Soc. 2018, 165, A6029–A6033.
- 20G. Benveniste, H. Rallo, L. Canals Casals, A. Merino, B. Amante, J. Environ. Manage. 2018, 226, 1–12.
- 21H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 22J. M. Zheng, D. P. Lv, M. Gu, C. M. Wang, J. G. Zhang, J. Liu, J. Xiao, J. Electrochem. Soc. 2013, 160, A2288–A2292.
- 23S. C. Nagpure, T. R. Tanim, E. J. Dufek, V. V. Viswanathan, A. J. Crawford, S. M. Wood, J. Xiao, C. C. Dickerson, B. Liaw, J. Power Sources 2018, 407, 53–62.
- 24L. Cheng, L. A. Curtiss, K. R. Zavadil, A. A. Gewirth, Y. Shao, K. G. Gallagher, ACS Energy Lett. 2016, 1, 503–509.
- 25G. R. Li, S. Wang, Y. N. Zhang, M. Li, Z. W. Chen, J. Lu, Adv. Mater. 2018, 30, 1705590.
- 26R. Kumar, J. Liu, J. Y. Hwang, Y. K. Sun, J. Mater. Chem. A 2018, 6, 11582–11605.
- 27Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441.
- 28H. Wang, W. Zhang, J. Xu, Z. Guo, Adv. Funct. Mater. 2018, 28, 1707520.
- 29G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Adv. Mater. 2018, 30, 1705590.
- 30D. Zheng, G. W. Wang, D. Liu, J. Y. Si, T. Y. Ding, D. Y. Qu, X. Q. Yang, D. Y. Qu, Adv. Mater. Technol. 2018, 3, 1700233.
- 31S. Y. Li, W. P. Wang, H. Duan, Y. G. Guo, J. Energy Chem. 2018, 27, 1555–1565.
- 32S. G. Zhang, K. Ueno, K. Dokko, M. Watanabe, Adv. Energy Mater. 2015, 5, 1500117.
- 33M. Cuisinier, P. E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L. F. Nazar, J. Phys. Chem. Lett. 2013, 4, 3227–3232; R. Elazari, G. Salitra, Y. Talyosef, J. Grinblat, C. Scordilis-Kelley, A. Xiao, J. Affinito, D. Aurbach, J. Electrochem. Soc. 2010, 157, A1131–A1138.
- 34G. Zhang, Z. W. Zhang, H. J. Peng, J. Q. Huang, Q. Zhang, Small Methods 2017, 1, 1700134.
- 35X. F. Yang, X. Li, K. Adair, H. M. Zhang, X. L. Sun, Electrochem. Energy Rev. 2018, 1, 239–293.
- 36S. M. Xu, D. W. McOwen, L. Zhang, G. T. Hitz, C. W. Wang, Z. H. Ma, C. J. Chen, W. Luo, J. Q. Dai, Y. D. Kuang, E. M. Hitz, K. Fu, Y. H. Gong, E. D. Wachsman, L. B. Hu, Energy Storage Mater. 2018, 15, 458–464.
- 37Z. Li, L. X. Yuan, Z. Q. Yi, Y. M. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. L. Zhang, Y. H. Huang, Adv. Energy Mater. 2014, 4, 1301473.
- 38J. Liu, M. F. Wang, N. Xu, T. Qian, C. L. Yan, Energy Storage Mater. 2018, 15, 53–64.
- 39C. Y. Fu, M. B. Oviedo, Y. H. Zhu, A. von Wald Cresce, K. Xu, G. H. Li, M. E. Itkis, R. C. Haddon, M. F. Chi, Y. Han, B. M. Wong, J. C. Guo, ACS Nano 2018, 12, 9775–9784.
- 40J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Y. Li, Electrochem. Commun. 2002, 4, 499–502; J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Adv. Mater. 2002, 14, 963–965.
- 41S. Warneke, A. Hintennach, M. R. Buchmeiser, J. Electrochem. Soc. 2018, 165, A2093–A2095.
- 42Y. Lu, X. Huang, Z. Song, K. Rui, Q. Wang, S. Gu, J. Yang, T. Xiu, M. E. Badding, Z. Wen, Energy Storage Mater. 2018, 15, 282–290.
- 43S. H. Kang, X. H. Zhao, J. Manuel, H. J. Ahn, K. W. Kim, K. K. Cho, J. H. Ahn, Phys. Status Solidi A 2014, 211, 1895–1899.
- 44K. Sun, A. K. Matarasso, R. M. Epler, X. Tong, D. Su, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, H. Gan, J. Electrochem. Soc. 2018, 165, A416–A423.
- 45X. Li, X. Sun, Adv. Funct. Mater. 2018, 28, 1801323; R. P. Fang, K. Chen, L. C. Yin, Z. H. Sun, F. Li, H. M. Cheng, Adv. Mater. 2018, 30, 1800863.
- 46X. N. Tang, Z. H. Sun, H. C. Yang, H. T. Fang, F. Wei, H. M. Cheng, S. P. Zhuo, F. Li, J. Energy Chem. 2019, 31, 119–124; H. J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018–11020; Angew. Chem. 2015, 127, 11170–11172.
- 47J. Zhang, J. Y. Li, W. P. Wang, X. H. Zhang, X. H. Tan, W. G. Chu, Y. G. Guo, Adv. Energy Mater. 2018, 8, 1702839.
- 48Z. L. Xu, J. K. Kim, K. Kang, Nano Today 2018, 19, 84–107.
- 49R. P. Fang, S. Y. Zhao, P. X. Hou, M. Cheng, S. G. Wang, H. M. Cheng, C. Liu, F. Li, Adv. Mater. 2016, 28, 3374–3382.
- 50M. Agostini, J. Y. Hwang, H. M. Kim, P. Bruni, S. Brutti, F. Croce, A. Matic, Y. K. Sun, Adv. Energy Mater. 2018, 8, 1801560.
- 51S. H. Chung, A. Manthiram, Adv. Mater. 2018, 30, 1705951.
- 52C. Hu, C. Kirk, J. Silvestre-Albero, F. Rodríguez-Reinoso, M. J. Biggs, J. Mater. Chem. A 2017, 5, 19924–19933.
- 53Y. Hwa, H. K. Seo, J. M. Yuk, E. J. Cairns, Nano Lett. 2017, 17, 7086–7094; X. F. Yang, Y. Yu, X. T. Lin, J. N. Liang, K. Adair, Y. Zhao, C. H. Wang, X. Li, Q. Sun, H. Z. zhang, X. F. Li, R. Y. Li, H. M. Zhang, X. L. Sun, J. Mater. Chem. A 2018, 6, 22958–22965.
- 54E. Cha, M. D. Patel, T. Y. Choi, W. Choi, ECS Trans. 2018, 85, 295–302.
- 55S. H. Chung, C. H. Chang, A. Manthiram, ACS Nano 2016, 10, 10462–10470.
- 56M. Barghamadi, A. S. Best, A. I. Bhatt, A. F. Hollenkamp, M. Musameh, R. J. Rees, T. Rüther, Energy Environ. Sci. 2014, 7, 3902–3920; J. T. Lee, H. Kim, M. Oschatz, D. C. Lee, F. Wu, H. T. Lin, B. Zdyrko, W. I. Cho, S. Kaskel, G. Yushin, Adv. Energy Mater. 2015, 5, 1400981; S. H. Chung, A. Manthiram, ACS Appl. Mater. Interfaces 2018, 10, 43749–43759; L. Qie, C. X. Zu, A. Manthiram, Adv. Energy Mater. 2016, 6, 1502459.
- 57S. H. Chung, A. Manthiram, Joule 2018, 2, 710–724.
- 58S. H. Chung, K. Y. Lai, A. Manthiram, Adv. Mater. 2018, 30, 1805571.
- 59L. Qie, A. Manthiram, ACS Energy Lett. 2016, 1, 46–51.
- 60M. Li, Y. F. Zhang, Z. Y. Bai, W. W. Liu, T. C. Liu, J. Gim, G. P. Jiang, Y. F. Yuan, D. Luo, K. Feng, R. S. Yassar, X. L. Wang, Z. W. Chen, J. Lu, Adv. Mater. 2018, 30, 1804271.
- 61M. Li, Y. N. Zhang, F. Hassan, W. Ahn, X. L. Wang, W. W. Liu, G. P. Jiang, Z. W. Chen, J. Mater. Chem. A 2017, 5, 21435–21441.
- 62C. Hu, C. Kirk, Q. Cai, C. Cuadrado-Collados, J. Silvestre-Albero, F. Rodríguez-Reinoso, M. J. Biggs, Adv. Energy Mater. 2017, 7, 1701082.
- 63W. J. Xue, Z. Shi, L. M. Suo, C. Wang, Z. Q. Wang, H. Z. Wang, K. P. So, A. Maurano, D. W. Yu, Y. M. Chen, L. Qie, Z. Zhu, G. Y. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374–382.
- 64H. Yuan, J. Q. Huang, H. J. Peng, M. M. Titirici, R. Xiang, R. J. Chen, Q. B. Liu, Q. Zhang, Adv. Energy Mater. 2018, 8, 1802107; H. Q. Wang, V. Sencadas, G. P. Gao, H. Gao, A. J. Du, H. K. Liu, Z. P. Guo, Nano Energy 2016, 26, 722–728; H. Yi, T. Lan, Y. Yu, Z. W. Lei, H. B. Zeng, T. Tang, C. Y. Wang, Y. H. Deng, J. Mater. Chem. A 2018, 6, 18660–18668; Q. Qi, X. H. Lv, W. Lv, Q. H. Yang, J. Energy Chem. 2019, 39, 88–100.
- 65J. B. Liao, Z. Liu, X. D. Liu, Z. B. Ye, J. Phys. Chem. C 2018, 122, 25917–25929.
- 66Q. Pang, X. Liang, C. Y. Kwok, J. Kulisch, L. F. Nazar, Adv. Energy Mater. 2017, 7, 1601630.
- 67X. J. Liu, T. Qian, J. Liu, J. H. Tian, L. Zhang, C. L. Yan, Small 2018, 14, 1801536.
- 68H. Al Salem, G. Babu, C. V. Rao, L. M. Arava, J. Am. Chem. Soc. 2015, 137, 11542–11545.
- 69Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519–527.
- 70H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12990–12995; Angew. Chem. 2016, 128, 13184–13189.
- 71J. Liang, L. C. Yin, X. N. Tang, H. C. Yang, W. S. Yan, L. Song, H. M. Cheng, F. Li, ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.
- 72X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L. F. Nazar, Adv. Energy Mater. 2016, 6, 1501636; X. Liang, Y. Rangom, C. Y. Kwok, Q. Pang, L. F. Nazar, Adv. Mater. 2017, 29, 1603040; Y. R. Zhong, L. C. Yin, P. He, W. Liu, Z. S. Wu, H. L. Wang, J. Am. Chem. Soc. 2018, 140, 1455–1459; T. H. Zhou, W. Lv, J. Li, G. M. Zhou, Y. Zhao, S. X. Fan, B. L. Liu, B. H. Li, F. Y. Kang, Q. H. Yang, Energy Environ. Sci. 2017, 10, 1694–1703; J. C. Ye, J. J. Chen, R. M. Yuan, D. R. Deng, M. S. Zheng, L. Cronin, Q. F. Dong, J. Am. Chem. Soc. 2018, 140, 3134–3138.
- 73K. L. Xu, X. J. Liu, J. W. Liang, J. Y. Cai, K. L. Zhang, Y. Lu, X. Wu, M. G. Zhu, Y. Liu, Y. C. Zhu, G. M. Wang, Y. T. Qian, ACS Energy Lett. 2018, 3, 420–427.
- 74H. J. Peng, Z. W. Zhang, J. Q. Huang, G. Zhang, J. Xie, W. T. Xu, J. L. Shi, X. Chen, X. B. Cheng, Q. Zhang, Adv. Mater. 2016, 28, 9551–9558.
- 75B. Q. Li, H. J. Peng, X. Chen, S. Y. Zhang, J. Xie, C. X. Zhao, Q. Zhang, CCS Chemistry 2019, 1, 128–137.
- 76L. Luo, S. H. Chung, C. H. Chang, A. Manthiram, J. Mater. Chem. A 2017, 5, 15002–15007.
- 77Y. T. Liu, D. D. Han, L. Wang, G. R. Li, S. Liu, X. P. Gao, Adv. Energy Mater. 2019, 9, 1803477; X. Y. Tao, J. G. Wang, Z. G. Ying, Q. X. Cai, G. Y. Zheng, Y. P. Gan, H. Huang, Y. Xia, C. Liang, W. K. Zhang, Y. Cui, Nano Lett. 2014, 14, 5288–5294.
- 78F. Y. Fan, Y. M. Chiang, J. Electrochem. Soc. 2017, 164, A917–A922.
- 79Q. Pang, C. Y. Kwok, D. Kundu, X. Liang, L. F. Nazar, Joule 2019, 3, 136–148.
- 80Y. X. Yang, Y. R. Zhong, Q. W. Shi, Z. H. Wang, K. N. Sun, H. L. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549–15552; Angew. Chem. 2018, 130, 15775–15778.
- 81M. Zhao, H. J. Peng, Z. W. Zhang, B. Q. Li, X. Chen, J. Xie, X. Chen, J. Y. Wei, Q. Zhang, J. Q. Huang, Angew. Chem. Int. Ed. 2019, 58, 3779–3783; Angew. Chem. 2019, 131, 3819–3823.
- 82Z. L. Xu, S. H. Lin, N. Onofrio, L. M. Zhou, F. Y. Shi, W. Lu, K. Kang, Q. Zhang, S. P. Lau, Nat. Commun. 2018, 9, 4164.
- 83G. M. Zhou, H. Z. Tian, Y. Jin, X. Y. Tao, B. F. Liu, R. F. Zhang, Z. W. Seh, D. Zhuo, Y. Y. Liu, J. Sun, J. Zhao, C. X. Zu, D. S. Wu, Q. F. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840–845; Q. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780–3786.
- 84Z. W. Zhang, H. J. Peng, M. Zhao, J. Q. Huang, Adv. Funct. Mater. 2018, 28, 1707536.
- 85H. J. Peng, J. Q. Huang, X. Y. Liu, X. B. Cheng, W. T. Xu, C. Z. Zhao, F. Wei, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 8458–8466; D. Lu, Q. Li, J. Liu, J. Zheng, Y. Wang, S. Ferrara, J. Xiao, J. G. Zhang, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 23094–23102.
- 86S. Meini, R. Elazari, A. Rosenman, A. Garsuch, D. Aurbach, J. Phys. Chem. Lett. 2014, 5, 915–918.
- 87L. C. Gerber, P. D. Frischmann, F. Y. Fan, S. E. Doris, X. Qu, A. M. Scheuermann, K. Persson, Y. M. Chiang, B. A. Helms, Nano Lett. 2016, 16, 549–554; P. D. Frischmann, L. C. H. Gerber, S. E. Doris, E. Y. Tsai, F. Y. Fan, X. H. Qu, A. Jain, K. A. Persson, Y. M. Chiang, B. A. Helms, Chem. Mater. 2015, 27, 6765–6770.
- 88K. R. Kim, K. S. Lee, C. Y. Ahn, S. H. Yu, Y. E. Sung, Sci. Rep. 2016, 6, 32433; J. F. Li, L. Q. Yang, S. L. Yang, J. Y. Lee, Adv. Energy Mater. 2015, 5, 1501808; Y. Hwa, P. D. Frischmann, B. A. Helms, E. J. Cairns, Chem. Mater. 2018, 30, 685–691.
- 89M. Zhao, H. J. Peng, J. Y. Wei, J. Q. Huang, B. Q. Li, H. Yuan, Q. Zhang, Small Methods 2019, 3, 1900344.
- 90S. R. Chen, Y. Gao, Z. X. Yu, M. L. Gordin, J. X. Song, D. H. Wang, Nano Energy 2017, 31, 418–423.
- 91G. Zhang, H. J. Peng, C. Z. Zhao, X. Chen, L. D. Zhao, P. Li, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16732–16736; Angew. Chem. 2018, 130, 16974–16978.
- 92S. Chen, F. Dai, M. L. Gordin, Z. X. Yu, Y. Gao, J. X. Song, D. H. Wang, Angew. Chem. Int. Ed. 2016, 55, 4231–4235; Angew. Chem. 2016, 128, 4303–4307.
- 93S. R. Chen, D. W. Wang, Y. M. Zhao, D. H. Wang, Small Methods 2018, 2, 1800038; M. Wu, Y. Cui, A. Bhargav, Y. Losovyj, A. Siegel, M. Agarwal, Y. Ma, Y. Z. Fu, Angew. Chem. Int. Ed. 2016, 55, 10027–10031; Angew. Chem. 2016, 128, 10181–10185.
- 94W. Chen, T. Y. Lei, C. Y. Wu, M. Deng, C. H. Gong, K. Hu, Y. C. Ma, L. P. Dai, W. Q. Lv, W. D. He, X. J. Liu, J. Xiong, C. L. Yan, Adv. Energy Mater. 2018, 8, 1702348; J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, Adv. Energy Mater. 2018, 8, 1800933.
- 95F. Y. Fan, W. C. Carter, Y. M. Chiang, Adv. Mater. 2015, 27, 5203–5209.
- 96H. L. Pan, J. Z. Chen, R. G. Cao, V. Murugesan, N. N. Rajput, K. S. Han, K. Persson, L. Estevez, M. H. Engelhard, J. G. Zhang, K. T. Mueller, Y. Cui, Y. Y. Shao, J. Liu, Nat. Energy 2017, 2, 813–820; J. Xiao, J. Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E. D. Walter, M. Hu, X. Deng, J. Feng, B. Y. Liaw, M. Gu, Z. D. Deng, D. Lu, S. Xu, C. Wang, J. Liu, Nano Lett. 2015, 15, 3309–3316; K. H. Wujcik, T. A. Pascal, C. D. Pemmaraju, D. Devaux, W. C. Stolte, N. P. Balsara, D. Prendergast, Adv. Energy Mater. 2015, 5, 1500285; Q. Cheng, W. H. Xu, S. Y. Qin, S. Das, T. W. Jin, A. J. Li, A. C. Li, B. Y. Qie, P. C. Yao, H. W. Zhai, C. M. Shi, X. Yong, Y. Yang, Angew. Chem. Int. Ed. 2019, 58, 5557–5561; Angew. Chem. 2019, 131, 5613–5617.
- 97J. Badoz-Lambling, R. Bonnaterre, G. Cauquis, M. Delamar, G. Demange, Electrochim. Acta 1976, 21, 119–131; J. Paris, V. Plichon, Electrochim. Acta 1981, 26, 1823–1829.
- 98Z. J. Li, Y. C. Zhou, Y. Wang, Y. C. Lu, Adv. Energy Mater. 2019, 9, 1802207.
- 99H. Chu, H. Noh, Y. J. Kim, S. Yuk, J. H. Lee, J. Lee, H. Kwack, Y. Kim, D. K. Yang, H. T. Kim, Nat. Commun. 2019, 10, 188.
- 100H. L. Pan, K. S. Han, M. H. Engelhard, R. G. Cao, J. Z. Chen, J. G. Zhang, K. T. Mueller, Y. Y. Shao, J. Liu, Adv. Funct. Mater. 2018, 28, 1707234.
- 101K. X. Liao, S. T. chen, H. H. wei, J. C. Fan, Q. J. xu, Y. L. Min, J. Mater. Chem. A 2018, 6, 23062–23070.
- 102S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem. Soc. 2015, 137, 12143–12152.
- 103J. J. Ma, G. R. Xu, Y. C. Li, C. Y. Ge, X. B. Li, Chem. Commun. 2018, 54, 14093–14096.
- 104C. W. Dong, W. Gao, B. Jin, Q. Jiang, iScience 2018, 6, 151–198.
- 105D. W. Wang, G. M. Zhou, F. Li, K. H. Wu, G. Q. Lu, H. M. Cheng, I. R. Gentle, Phys. Chem. Chem. Phys. 2012, 14, 8703–8710; L. L. Zhang, Y. J. Wang, Z. Q. Niu, J. Chen, Carbon 2019, 141, 400–416.
- 106H. J. Yang, A. Naveed, Q. Y. Li, C. Guo, J. H. Chen, J. Y. Lei, J. Yang, Y. N. Nuli, J. L. Wang, Energy Storage Mater. 2018, 15, 299–307.
- 107W. X. Wang, Z. Cao, G. A. Elia, Y. Q. Wu, W. Wahyudi, E. Abou-Hamad, A. H. Emwas, L. Cavallo, L. J. Li, J. Ming, ACS Energy Lett. 2018, 3, 2899–2907.
- 108H. Kang, H. Kim, M. J. Park, Adv. Energy Mater. 2018, 8, 1802423.
- 109A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj, Y. Z. Fu, J. Mater. Chem. A 2017, 5, 25005–25013.
- 110M. Helen, T. Diemant, S. Schindler, R. J. Behm, M. Danzer, U. Kaiser, M. Fichtner, M. Anji Reddy, ACS Omega 2018, 3, 11290–11299.
- 111H. Wang, B. D. Adams, H. L. Pan, L. Zhang, K. S. Han, L. Estevez, D. P. Lu, H. P. Jia, J. Feng, J. H. Guo, K. R. Zavadil, Y. Y. Shao, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1800590.
- 112Y. Cui, J. D. Ackerson, Y. Ma, A. Bhargav, J. A. Karty, W. Guo, L. K. Zhu, Y. Z. Fu, Adv. Funct. Mater. 2018, 28, 1801791.
- 113A. Bhargav, C. H. Chang, Y. Fu, A. Manthiram, ACS Appl. Mater. Interfaces 2019, 11, 6136–6142.
- 114J. Newman, W. Tiedemann, J. Electrochem. Soc. 1997, 144, 3081–3091; G. J. May, A. Davidson, B. Monahov, J. Energy Storage 2018, 15, 145–157.
- 115M. Sudoh, J. Neman, J. Electrochem. Soc. 1990, 137, 876–833; D. Eroglu, A. C. West, J. Power Sources 2012, 203, 211–221.
- 116J. Lefevr, L. Cervini, J. M. Griffin, D. Blanchard, J. Phys. Chem. C 2018, 122, 15264–15275; Z. Lin, Z. C. Liu, W. J. Fu, N. J. Dudney, C. D. Liang, Angew. Chem. Int. Ed. 2013, 52, 7460–7463; Angew. Chem. 2013, 125, 7608–7611.
- 117C. W. Lee, Q. Pang, S. Ha, L. Cheng, S. D. Han, K. R. Zavadil, K. G. Gallagher, L. F. Nazar, M. Balasubramanian, ACS Cent. Sci. 2017, 3, 605–613.
- 118Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783–791.
- 119G. L. Xu, H. Sun, C. Luo, L. Estevez, M. H. Zhuang, H. Gao, R. Amine, H. Wang, X. Y. Zhang, C. J. Sun, Y. Z. Liu, Y. Ren, S. M. Heald, C. S. Wang, Z. H. Chen, K. Amine, Adv. Energy Mater. 2018, 8, 1802235.
- 120C. Weller, J. Pampel, S. Dörfler, H. Althues, S. Kaskel, Energy Technol. 2019, 1900625.
- 121S. Drvarič Talian, S. Jeschke, A. Vizintin, K. Pirnat, I. Arčon, G. Aquilanti, P. Johansson, R. Dominko, Chem. Mater. 2017, 29, 10037–10044.
- 122C. Weller, S. Thieme, P. Hartel, H. Althues, S. Kaskel, J. Electrochem. Soc. 2017, 164, A3766–A3771.
- 123M. Cuisinier, P. E. Cabelguen, B. D. Adams, A. Garsuch, M. Balasubramanian, L. F. Nazar, Energy Environ. Sci. 2014, 7, 2697–2705.
- 124Y. Matsumae, K. Obata, A. Ando, M. Yanagi, Y. Kamei, K. Ueno, K. Dokko, M. Watanabe, Electrochemistry 2019, 87, 254–259; A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. L. Liu, M. L. Thomas, K. Dokko, M. Watanabe, J. Phys. Chem. C 2019, 123, 14229–14238; Y. Ishino, K. Takahashi, W. Murata, Y. Umebayashi, S. Tsuzuki, M. Watanabe, M. Kamaya, S. Seki, Energy Technol. 2019, 1900197; J. W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20531–20541.
- 125F. He, X. J. Wu, J. F. Qian, Y. L. Cao, H. X. Yang, X. P. Ai, D. G. Xia, J. Mater. Chem. A 2018, 6, 23396–23407.
- 126F. F. Huang, L. J. Gao, Y. P. Zou, G. Q. Ma, J. J. Zhang, S. Q. Xu, Z. X. Li, X. Liang, J. Mater. Chem. A 2019, 7, 12498–12506.
- 127K. Fu, Y. H. Gong, G. T. Hitz, D. W. McOwen, Y. J. Li, S. M. Xu, Y. Wen, L. Zhang, C. W. Wang, G. Pastel, J. Q. Dai, B. Y. Liu, H. Xie, Y. G. Yao, E. D. Wachsman, L. B. Hu, Energy Environ. Sci. 2017, 10, 1568–1575; K. Fu, Y. H. Gong, S. M. Xu, Y. Z. Zhu, Y. J. Li, J. Q. Dai, C. W. Wang, B. Y. Liu, G. Pastel, H. Xie, Y. G. Yao, Y. F. Mo, E. Wachsman, L. B. Hu, Chem. Mater. 2017, 29, 8037–8041; X. Y. Yao, N. Huang, F. D. Han, Q. Zhang, H. L. Wan, J. P. Mwizerwa, C. S. Wang, X. X. Xu, Adv. Energy Mater. 2017, 7, 1602923; J. P. Yue, M. Yan, Y. X. Yin, Y. G. Guo, Adv. Funct. Mater. 2018, 28, 1707533; G. L. Xu, H. Sun, C. Luo, L. Estevez, M. H. Zhuang, H. Gao, R. Amine, H. Wang, X. Y. Zhang, C. J. Sun, Y. Z. Liu, Y. Ren, S. M. Heald, C. S. Wang, Z. H. Chen, K. Amine, Adv. Energy Mater. 2019, 9, 1802235.
- 128S. M. Chen, K. H. Wen, J. T. Fan, Y. Bando, D. Golberg, J. Mater. Chem. A 2018, 6, 11631–11663; J. Zheng, X. L. Fan, G. B. Ji, H. Y. Wang, S. Hou, K. C. DeMella, S. R. Raghavan, J. Wang, K. Xu, C. S. Wang, Nano Energy 2018, 50, 431–440.
- 129M. Agostini, D. H. Lim, M. Sadd, C. Fasciani, M. A. Navarra, S. Panero, S. Brutti, A. Matic, B. Scrosati, ChemSusChem 2017, 10, 3490–3496.
- 130J. Z. Chen, W. A. Henderson, H. L. Pan, B. R. Perdue, R. G. Cao, J. Z. Hu, C. Wan, K. S. Han, K. T. Mueller, J. G. Zhang, Y. Y. Shao, J. Liu, Nano Lett. 2017, 17, 3061–3067.
- 131H. H. Xu, S. F. Wang, A. Manthiram, Adv. Energy Mater. 2018, 8, 1800813.