Synergistically Interactive Pyridinic-N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution
Dr. Di Zhao
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kaian Sun
Department of Chemistry, Tsinghua University, Beijing, 100084 China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Weng-Chon Cheong
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Chao Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Shoujie Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXing Cao
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorKonglin Wu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yuan Pan
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZewen Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBotao Hu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Qing Peng
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Chen Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Di Zhao
Department of Chemistry, Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kaian Sun
Department of Chemistry, Tsinghua University, Beijing, 100084 China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Weng-Chon Cheong
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Chao Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Shoujie Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXing Cao
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorKonglin Wu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yuan Pan
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZewen Zhuang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBotao Hu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Qing Peng
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Chen Chen
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorProf. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
The effect of the dopant: In the electrocatalyst comprising MoP nanoparticles encapsulated by nitrogen-doped carbon, the sites where MoP interacts with pyridinic N (but not pyrrolic N or graphitic N) lead to increased electron density on the nitrogen-doped carbon, as well as optimized adsorption of H* and OH*, all of which help to accelerate the hydrogen evolution reaction in alkaline media.
Abstract
For electrocatalysts for the hydrogen evolution reaction (HER), encapsulating transition metal phosphides (TMPs) into nitrogen-doped carbon materials has been known as an effective strategy to elevate the activity and stability. Yet still, it remains unclear how the TMPs work synergistically with the N-doped support, and which N configuration (pyridinic N, pyrrolic N, or graphitic N) contributes predominantly to the synergy. Here we present a HER electrocatalyst (denoted as MoP@NCHSs) comprising MoP nanoparticles encapsulated in N-doped carbon hollow spheres, which displays excellent activity and stability for HER in alkaline media. Results of experimental investigations and theoretical calculations indicate that the synergy between MoP and the pyridinic N can most effectively promote the HER in alkaline media.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201908760-sup-0001-misc_information.pdf4.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Y. Chung, S. W. Jun, G. Yoon, H. Kim, J. M. Yoo, K. S. Lee, T. Kim, H. Shin, A. K. Sinha, S. G. Kwon, K. Kang, T. Hyeon, Y. E. Sung, J. Am. Chem. Soc. 2017, 139, 6669–6674;
- 1bR. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256–1260;
- 1cZ. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998;
- 1dZ. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J. J. Cha, G. Yu, J. Am. Chem. Soc. 2018, 140, 5241–5247.
- 2Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2016, 138, 16174–16181.
- 3
- 3aJ. X. Feng, S. Y. Tong, Y. X. Tong, G. R. Li, J. Am. Chem. Soc. 2018, 140, 5118–5126;
- 3bC. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater. 2017, 29, 1602441.
- 4
- 4aM. Tavakkoli, T. Kallio, O. Reynaud, A. G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E. I. Kauppinen, K. Laasonen, Angew. Chem. Int. Ed. 2015, 54, 4535–4538; Angew. Chem. 2015, 127, 4618–4621;
- 4bJ. S. Li, Y. Wang, C. H. Liu, S. L. Li, Y. G. Wang, L. Z. Dong, Z. H. Dai, Y. F. Li, Y. Q. Lan, Nat. Commun. 2016, 7, 11204;
- 4cY. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2015, 54, 10752–10757; Angew. Chem. 2015, 127, 10902–10907;
- 4dY. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 2610–2618.
- 5
- 5aS. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li, Y. Wang, J. Am. Chem. Soc. 2015, 137, 15753–15759;
- 5bX. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. Int. Ed. 2014, 53, 4372–4376; Angew. Chem. 2014, 126, 4461–4465;
- 5cD. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. 2016, 11, 218–230.
- 6J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 2015, 54, 2100–2104; Angew. Chem. 2015, 127, 2128–2132.
- 7
- 7aX. R. Wang, J. Y. Liu, Z. W. Liu, W. C. Wang, J. Luo, X. P. Han, X. W. Du, S. Z. Qiao, J. Yang, Adv. Mater. 2018, 30, 1800005;
- 7bJ. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 2017, 8, 14969.
- 8H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, Sci. Adv. 2016, 2, e1501122.
- 9
- 9aX. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Adv. Funct. Mater. 2018, 28, 1706523;
- 9bZ. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702–5707;
- 9cP. Xiao, M. Alam Sk, L. Thia, X. M. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624–2629;
- 9dG. Li, Y. Sun, J. Rao, J. Wu, A. Kumar, Q. N. Xu, C. Fu, E. Liu, G. R. Blake, P. Werner, B. Shao, K. Liu, S. Parkin, X. Liu, M. Fahlman, S. C. Liou, G. Auffermann, J. Zhang, C. Felser, X. Feng, Adv. Energy Mater. 2018, 8, 1801258;
- 9eJ. Kibsgaard, T. F. Jaramillo, Angew. Chem. Int. Ed. 2014, 53, 14433–14437; Angew. Chem. 2014, 126, 14661–14665;
- 9fJ. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 12854–12858; Angew. Chem. 2016, 128, 13046–13050;
- 9gR. Wu, B. Xiao, Q. Gao, Y. R. Zheng, X. S. Zheng, J. F. Zhu, M. R. Gao, S. H. Yu, Angew. Chem. Int. Ed. 2018, 57, 15445–15449; Angew. Chem. 2018, 130, 15671–15675;
- 9hY. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529–1541;
- 9iT. Liu, P. Li, N. Yao, G. Cheng, S. Chen, W. Luo, Y. Yin, Angew. Chem. Int. Ed. 2019, 58, 4679–4684; Angew. Chem. 2019, 131, 4727–4732;
- 9jY. Y. Ma, C. X. Wu, X. J. Feng, H. Q. Tan, L. K. Yan, Y. Liu, Z. H. Kang, E. B. Wang, Y. G. Li, Energy Environ. Sci. 2017, 10, 788–798.
- 10J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen, T. F. Jaramillo, Energy Environ. Sci. 2015, 8, 3022–3029.
- 11Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 7121–7125; Angew. Chem. 2017, 129, 7227–7231.
- 12P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 610–614; Angew. Chem. 2017, 129, 625–629.
- 13
- 13aY. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517–3523;
- 13bY. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 2131–2136; Angew. Chem. 2015, 127, 2159–2164.
- 14J. Zhou, P. N. Duchesne, Y. Hu, J. Wang, P. Zhang, Y. Li, T. Regier, H. Dai, Phys. Chem. Chem. Phys. 2014, 16, 15787–15791.
- 15J. Zhong, J. J. Deng, B. H. Mao, T. Xie, X. H. Sun, Z. G. Mou, C. H. Hong, P. Yang, S. D. Wang, Carbon 2012, 50, 335–338.
- 16R. Kapoor, S. Oyama, B. Friihberger, B. DeVries, J. Chen, Catal. Lett. 1995, 34, 179–189.
- 17K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N. E. Sung, S. H. Kim, S. Han, K. T. Nam, J. Am. Chem. Soc. 2014, 136, 7435–7443.
- 18D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850–855.
- 19Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, J. Am. Chem. Soc. 2016, 138, 5087–5092.
- 20Y. Huan, J. Shi, X. Zou, Y. Gong, Z. Zhang, M. Li, L. Zhao, R. Xu, S. Jiang, X. Zhou, M. Hong, C. Xie, H. Li, X. Lang, Q. Zhang, L. Gu, X. Yan, Y. Zhang, Adv. Mater. 2018, 30, 1705916.
- 21
- 21aK. Mamtani, D. Jain, D. Zemlyanov, G. Celik, J. Luthman, G. Renkes, A. C. Co, U. S. Ozkan, ACS Catal. 2016, 6, 7249–7259;
- 21bO. L. Li, K. Prabakar, A. Kaneko, H. Park, T. Ishizaki, Catal. Today 2019, https://doi.org/10.1016/j.cattod.2019.02.058.
- 22
- 22aX. Li, G. Liu, B. N. Popov, J. Power Sources 2010, 195, 6373–6378;
- 22bX. Li, B. N. Popov, T. Kawahara, H. Yanagi, J. Power Sources 2011, 196, 1717–1722.
- 23S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Adv. Funct. Mater. 2018, 28, 1800499.
- 24X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490–4493.
- 25J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441–446.
- 26B. Hammer, J. K. Norskov, Nature 1995, 376, 238–240.
- 27Y. Zheng, Y. Jiao, A. Vasileff, S. Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 7568–7579; Angew. Chem. 2018, 130, 7690–7702.
- 28P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 29G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 140, 214106.
- 30J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23–J26.