Boosting Electrocatalytic Hydrogen Evolution over Metal–Organic Frameworks by Plasmon-Induced Hot-Electron Injection
Shan-Shan Wang
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
These authors contributed equally to this work.
Search for more papers by this authorLong Jiao
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorYunyang Qian
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorWen-Chao Hu
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorDr. Gui-Yin Xu
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Chen Wang
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hai-Long Jiang
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorShan-Shan Wang
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
These authors contributed equally to this work.
Search for more papers by this authorLong Jiao
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorYunyang Qian
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorWen-Chao Hu
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorDr. Gui-Yin Xu
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Chen Wang
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hai-Long Jiang
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorGraphical Abstract
Some like it hot: A composite of Au nanorods/CoFe-MOF nanosheets (Au/CoFe-MOFNs) was used as an electrocatalyst for the hydrogen evolution reaction (HER). Au/CoFe-MOFNs give a four-fold increase of current density and a much reduced activation energy upon light irradiation as a result of hot-electron injection from plasmonic Au to CoFe-MOFNs.
Abstract
Efficient hydrogen evolution via electrocatalytic water splitting holds great promise in modern energy devices. Herein, we demonstrate that the localized surface plasmon resonance (LSPR) excitation of Au nanorods (NRs) dramatically improves the electrocatalytic hydrogen evolution activity of CoFe-metal–organic framework nanosheets (CoFe-MOFNs), leading to a more than 4-fold increase of current density at −0.236 V (vs. RHE) for Au/CoFe-MOFNs composite under light irradiation versus in dark. Mechanistic investigations reveal that the hydrogen evolution enhancement can be largely attributed to the injection of hot electrons from AuNRs to CoFe-MOFNs, raising the Fermi level of CoFe-MOFNs, facilitating the reduction of H2O and affording decreased activation energy for HER. This study highlights the superiority of plasmonic excitation on improving electrocatalytic efficiency of MOFs and provides a novel avenue towards the design of highly efficient water-splitting systems under light irradiation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201906134-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180;
- 1bI. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003;
- 1cY. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299;
- 1dY. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang, M. Chen, Energy Environ. Sci. 2016, 9, 2257–2261;
- 1eL. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, Nat. Commun. 2016, 7, 10667;
- 1fY. Zheng, Y. Jiao, A. Vasileff, S. Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 7568–7579; Angew. Chem. 2018, 130, 7690–7702.
- 2
- 2aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 2bH. C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418;
- 2cZ. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Adv. Mater. 2018, 30, 1702891;
- 2dB. Li, H. M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28, 8819–8860;
- 2eQ. Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774–4808.
- 3
- 3aG. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, 1800702;
- 3bL. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater. 2018, 30, 1703663;
- 3cJ. D. Xiao, H. L. Jiang, Acc. Chem. Res. 2019, 52, 356–366;
- 3dX. F. Lu, P. Q. Liao, J. W. Wang, J. X. Wu, X. W. Chen, C. T. He, J. P. Zhang, G. R. Li, X. M. Chen, J. Am. Chem. Soc. 2016, 138, 8336–8339;
- 3eJ. Gascon, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, ACS Catal. 2014, 4, 361–378;
- 3fL. Zeng, X. Guo, C. He, C. Duan, ACS Catal. 2016, 6, 7935–7947;
- 3gM. Zhao, S. Ou, C. D. Wu, Acc. Chem. Res. 2014, 47, 1199–1207;
- 3hL. Jiao, H. L. Jiang, Chem 2019, 5, 786–804.
- 4
- 4aJ. S. Qin, D. Y. Du, W. Guan, X. J. Bo, Y. F. Li, L. P. Guo, Z. M. Su, Y. Y. Wang, Y. Q. Lan, H. C. Zhou, J. Am. Chem. Soc. 2015, 137, 7169–7177;
- 4bI. Hod, P. Deria, W. Bury, J. E. Mondloch, C. W. Kung, M. So, M. D. Sampson, A. W. Peters, C. P. Kubiak, O. K. Farha, J. T. Hupp, Nat. Commun. 2015, 6, 8304;
- 4cM. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363–5372;
- 4dD. Micheroni, G. Lan, W. Lin, J. Am. Chem. Soc. 2018, 140, 15591–15595;
- 4eJ. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341;
- 4fY. P. Wu, W. Zhou, J. Zhao, W. W. Dong, Y. Q. Lan, D. S. Li, S. Sun, X. Bu, Angew. Chem. Int. Ed. 2017, 56, 13001–13005; Angew. Chem. 2017, 129, 13181–13185.
- 5S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 6
- 6aA. Agrawal, S. H. Cho, O. Zandi, S. Ghosh, R. W. Johns, D. J. Milliron, Chem. Rev. 2018, 118, 3121–3207;
- 6bL. M. Liz-Marzán, C. J. Murphy, J. Wang, Chem. Soc. Rev. 2014, 43, 3820–3822;
- 6cH. Yang, L. Q. He, Y. W. Hu, X. Lu, G. R. Li, B. Liu, B. Ren, Y. Tong, P. P. Fang, Angew. Chem. Int. Ed. 2015, 54, 11462–11466; Angew. Chem. 2015, 127, 11624–11628.
- 7
- 7aC. Wang, X. G. Nie, Y. Shi, Y. Zhou, J. J. Xu, X. H. Xia, H. Y. Chen, ACS Nano 2017, 11, 5897–5905;
- 7bP. V. Kamat, G. V. Hartland, ACS Energy Lett. 2018, 3, 1467–1469;
- 7cY. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, H. Y. Chen, J. Am. Chem. Soc. 2015, 137, 7365–7370;
- 7dG. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 2016, 138, 9128–9136;
- 7eC. Wang, Y. Shi, D. R. Yang, X. H. Xia, Curr. Opin. Electrochem. 2018, 7, 95–102.
- 8L. Liu, S. Ouyang, J. Ye, Angew. Chem. Int. Ed. 2013, 52, 6689–6693; Angew. Chem. 2013, 125, 6821–6825.
- 9H. X. Zhang, Y. Li, M. Y. Li, H. Zhang, J. Zhang, Nanoscale 2018, 10, 2236–2241.
- 10C. Kim, B. L. Suh, H. Yun, J. Kim, H. Lee, ACS Catal. 2017, 7, 2294–2302.
- 11S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567–576.
- 12Z. Li, J. D. Xiao, H. L. Jiang, ACS Catal. 2016, 6, 5359–5365.
- 13
- 13aH. Cui, G. Zhu, Y. Xie, W. Zhao, C. Yang, T. Lin, H. Gu, F. Huang, J. Mater. Chem. A 2015, 3, 11830–11837;
- 13bD. R. Baker, P. V. Kamat, Adv. Funct. Mater. 2009, 19, 805–811;
- 13cZ. Xie, X. Liu, W. Wang, X. Wang, C. Liu, Q. Xie, Z. Li, Z. Zhang, Nano Energy 2015, 11, 400–408;
- 13dJ. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, H. Riechert, Nano Lett. 2017, 17, 1529–1537;
- 13eJ. S. DuChene, G. Tagliabue, A. J. Welch, W. H. Cheng, H. A. Atwater, Nano Lett. 2018, 18, 2545–2550.
- 14H. H. Wei, Z. J. Yang, Y. L. Min, J. C. Fan, Q. J. Xu, Part. Part. Syst. Charact. 2017, 14, 1600200.
- 15
- 15aD. E. Scaife, Sol. Energy 1980, 25, 41–54;
- 15bN. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G. I. N. Waterhouse, T. Zhang, H. Huang, Nano Energy 2017, 38, 72–81.