Core–Shell-Structured LaTaON2 Transformed from LaKNaTaO5 Plates for Enhanced Photocatalytic H2 Evolution
Dr. Xin Wang
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorDr. Takashi Hisatomi
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorDr. Zheng Wang
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Prof. Jun Song
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Junle Qu
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorDr. Tsuyoshi Takata
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Prof. Kazunari Domen
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Xin Wang
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorDr. Takashi Hisatomi
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorDr. Zheng Wang
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Prof. Jun Song
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Junle Qu
College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorDr. Tsuyoshi Takata
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
Search for more papers by this authorCorresponding Author
Prof. Kazunari Domen
Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorGraphical Abstract
Core–shell structured plate-like LaKNaTaO5/LaTaON2 containing LaTaON2 shells exposing (010) facets and having a low defect density on the lattice-matched LaKNaTaO5 cores was obtained by a brief nitridation process. When modified with a Rh co-catalyst, LaKNaTaO5/LaTaON2 exhibited photocatalytic H2 evolution activity four times greater than that obtained from conventional LaTaON2 powders with uncontrolled facets.
Abstract
LaTaON2 is a photocatalyst with intense visible light absorption up to 650 nm, but exhibits low H2 evolution activity owing to uncontrolled facets and high defect densities. In this work, core–shell-structured plate-like LaKNaTaO5/LaTaON2 was synthesized by nitriding a layered perovskite-type LaKNaTaO5. The volatilization of K and Na species during the nitridation promoted the rapid transformation of LaKNaTaO5 into LaTaON2 along [010] direction with the plate-like shape retained. This yielded high-quality LaTaON2 shells exposing (010) facets on the lattice-matched LaKNaTaO5 cores. After loading with a Rh co-catalyst, LaKNaTaO5/LaTaON2 showed photocatalytic H2 evolution activity four times greater than that obtained from conventional irregular-shaped LaTaON2 powders and utilized visible light up to 620 nm. This work provides a novel strategy yielding oxynitrides with well-defined facets and low defect densities by selecting lattice-matched oxide precursors containing volatile components.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201906081-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. S. Lewis, Science 2007, 315, 798–801;
- 1bJ. Chow, R. J. Kopp, P. R. Portney, Science 2003, 302, 1528–1531.
- 2
- 2aW. Wang, J. Chen, C. Li, W. Tian, Nat. Commun. 2014, 5, 4647;
- 2bZ. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109–2125;
- 2cZ. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625;
- 2dT. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535.
- 3
- 3aQ. Han, B. Wang, Y. Zhao, C. Hu, L. Qu, Angew. Chem. 2015, 127, 11595–11599;
- 3bR. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 2010, 132, 11828–11829;
- 3cS. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S. S. K. Ma, F. Zhang, K. Domen, C. Li, Angew. Chem. Int. Ed. 2015, 54, 8498–8501; Angew. Chem. 2015, 127, 8618–8621;
- 3dM. Matsukawa, R. Ishikawa, T. Hisatomi, Y. Moriya, N. Shibata, J. Kubota, Y. Ikuhara, K. Domen, Nano Lett. 2014, 14, 1038–1041;
- 3eM. Jansen, H. Letschert, Nature 2000, 404, 980.
- 4
- 4aJ. Zhou, C. Zhou, Z. Shi, Z. Xu, S. Yan, Z. Zou, J. Mater. Chem. A 2018, 6, 7706–7713;
- 4bW. Si, D. Pergolesi, F. Haydous, A. Fluri, A. Wokaun, T. Lippert, Phys. Chem. Chem. Phys. 2017, 19, 656–662;
- 4cM. Hojamberdiev, M. F. Bekheet, J. N. Hart, J. J. M. Vequizo, A. Yamakata, K. Yubuta, A. Gurlo, M. Hasegawa, K. Domen, K. Teshima, Phys. Chem. Chem. Phys. 2017, 19, 22210–22220;
- 4dL. Zhang, Y. Song, J. Feng, T. Fang, Y. Zhong, Z. Li, Z. Zou, Int. J. Hydrogen Energy 2014, 39, 7697–7704.
- 5M. Takasaki, C. Izawa, K. Kishida, T. Watanabe, Trans. Mater. Res. Soc. Jpn. 2015, 40, 275–279.
- 6
- 6aJ. Fu, S. E. Skrabalak, Angew. Chem. Int. Ed. 2017, 56, 14169–14173; Angew. Chem. 2017, 129, 14357–14361;
- 6bF. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi, K. Domen, J. Am. Chem. Soc. 2012, 134, 8348–8351.
- 7
- 7aZ. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shibata, Y. Ikuhara, K. Domen, Nat. Catal. 2018, 1, 756;
- 7bS. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050.
- 8
- 8aY. Du, L. Yuan, K. Huang, S. Feng, J. Lumin. 2013, 135, 196–200;
- 8bI. P. Roof, M. D. Smith, H.-C. zur Loye, Solid State Sci. 2010, 12, 759–764;
- 8cK. Korzeniowski, M. Sobczyk, Solid State Commun. 2018, 273, 30–33;
- 8dI. P. Roof, M. D. Smith, S. Park, H.-C. zur Loye, J. Am. Chem. Soc. 2009, 131, 4202–4203.
- 9K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 10
- 10aS. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed. 2005, 44, 2154–2157; Angew. Chem. 2005, 117, 2192–2195;
- 10bY. Sun, Y. Xia, Science 2002, 298, 2176–2179.
- 11
- 11aC. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, Angew. Chem. Int. Ed. 2015, 54, 2955–2959; Angew. Chem. 2015, 127, 2998–3002;
- 11bK. Ueda, H. Kato, M. Kobayashi, M. Hara, M. Kakihana, J. Mater. Chem. A 2013, 1, 3667–3674.
- 12
- 12aM. Hara, E. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, K. Domen, J. Phys. Chem. B 2003, 107, 13441–13445;
- 12bS. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang, C. Li, Angew. Chem. Int. Ed. 2015, 54, 3047–3051; Angew. Chem. 2015, 127, 3090–3094;
- 12cA. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253–278.
- 13W. Luo, Z. Li, X. Jiang, T. Yu, L. Liu, X. Chen, J. Ye, Z. Zou, Phys. Chem. Chem. Phys. 2008, 10, 6717–6723.
- 14
- 14aF. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294–2320;
- 14bX. Chen, C. Li, M. Grätzel, R. Kostecki, S. S. Mao, Chem. Soc. Rev. 2012, 41, 7909–7937.
- 15
- 15aA. Iwase, A. Kudo, Chem. Commun. 2017, 53, 6156–6159;
- 15bT. Hisatomi, C. Katayama, Y. Moriya, T. Minegishi, M. Katayama, H. Nishiyama, T. Yamada, K. Domen, Energy Environ. Sci. 2013, 6, 3595–3599.