Broadband Light Harvesting and Unidirectional Electron Flow for Efficient Electron Accumulation for Hydrogen Generation
Dr. Nan Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorMing-Yu Qi
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorLan Yuan
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Dr. Xianzhi Fu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorDr. Zi-Rong Tang
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Dr. Jinlong Gong
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorDr. Nan Zhang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorMing-Yu Qi
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorLan Yuan
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Dr. Xianzhi Fu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorDr. Zi-Rong Tang
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorProf. Dr. Jinlong Gong
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorGraphical Abstract
Abstract
The efficiency of solar hydrogen evolution closely depends on the multiple electrons accumulation on the catalytic center for two-electron-involved water reduction. Herein, we report an effective approach to enable broadband light absorption and unidirectional electron flow for efficiently accumulating electrons at active sites for hydrogen evolution by rationally engineering the nanostructure of Pt nanoparticles (NPs), TiO2, and SiO2 support. In addition to Schottky-junction-driven electron transfer from TiO2 to Pt, Pt NPs also produce hot electrons by recycling the scattered visible and near-infrared (vis-NIR) light of the support. Unidirectional electron flow to active sites is realized by tuning the components spatial distribution. These features collectively accumulate multiple electrons at catalytic Pt sites, thereby affording enhanced activity toward hydrogen evolution under simulated sunlight.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201905981-sup-0001-misc_information.pdf2.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013–1018;
- 1bT. Wang, J. Gong, Angew. Chem. Int. Ed. 2015, 54, 10718–10732; Angew. Chem. 2015, 127, 10866–10881.
- 2M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 2015, 6, 6797.
- 3H. Zhu, N. Song, H. Lv, C. L. Hill, T. Lian, J. Am. Chem. Soc. 2012, 134, 11701–11708.
- 4H. Zhu, N. Song, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 2012, 134, 4250–4257.
- 5
- 5aJ. Kiwi, M. Grätzel, Nature 1979, 281, 657;
- 5bJ. Kiwi, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7214–7217;
- 5cA. Harriman, G. Porter, M.-C. Richoux, J. Chem. Soc. Faraday Trans. 2 1981, 77, 833–844;
- 5dK. P. Acharya, R. S. Khnayzer, T. O'Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, M. Zamkov, Nano Lett. 2011, 11, 2919–2926;
- 5eK. Wu, Z. Chen, H. Lv, H. Zhu, C. L. Hill, T. Lian, J. Am. Chem. Soc. 2014, 136, 7708–7716;
- 5fL. Amirav, A. P. Alivisatos, J. Phys. Chem. Lett. 2010, 1, 1051–1054;
- 5gQ. Li, F. Zhao, C. Qu, Q. Shang, Z. Xu, L. Yu, J. R. McBride, T. Lian, J. Am. Chem. Soc. 2018, 140, 11726–11734.
- 6J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller, V. I. Klimov, Acc. Chem. Res. 2008, 41, 1810–1819.
- 7N. Zhang, C. Han, Y.-J. Xu, J. J. Foley IV, D. Zhang, J. Codrington, S. K. Gray, Y. Sun, Nat. Photonics 2016, 10, 473–482.
- 8N. Zhang, C. Han, X. Fu, Y.-J. Xu, Chem 2018, 4, 1832–1861.
- 9F. Xiao, Chem. Commun. 2012, 48, 6538–6540.
- 10
- 10aH. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205–213;
- 10bS. Son, S. H. Hwang, C. Kim, J. Y. Yun, J. Jang, ACS Appl. Mater. Interfaces 2013, 5, 4815–4820.
- 11
- 11aM. Ruan, X. Sun, Y. Zhang, W. Xu, ACS Catal. 2015, 5, 233–240;
- 11bV. W.-h. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Nat. Commun. 2016, 7, 12165.
- 12
- 12aY. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S. i. Matsumoto, J. Catal. 2006, 242, 103–109;
- 12bC.-P. Hwang, C.-T. Yeh, J. Catal. 1999, 182, 48–55.
- 13J. Scott, W. Irawaty, G. Low, R. Amal, Appl. Catal. B 2015, 164, 10–17.
- 14A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735–758.
- 15L. Yuan, B. Weng, J. C. Colmenares, Y. Sun, Y.-J. Xu, Small 2017, 13, 1702253.
- 16J. Li, S. K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Nat. Commun. 2013, 4, 2651.
- 17S.-F. Hung, F.-X. Xiao, Y.-Y. Hsu, N.-T. Suen, H.-B. Yang, H. M. Chen, B. Liu, Adv. Energy Mater. 2016, 6, 1501339.
- 18J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, J. Am. Chem. Soc. 2004, 126, 13550–13559.
- 19S. Soedergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, J. Phys. Chem. 1994, 98, 5552–5556.
- 20F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, P. Salvador, J. Phys. Chem. B 2002, 106, 334–339.
- 21G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, K. Tohji, Int. J. Hydrogen Energy 2003, 28, 919–926.
- 22J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909.
- 23Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 7088–7092; Angew. Chem. 2011, 123, 7226–7230.
- 24R. Long, K. Mao, M. Gong, S. Zhou, J. Hu, M. Zhi, Y. You, S. Bai, J. Jiang, Q. Zhang, X. Wu, Y. Xiong, Angew. Chem. Int. Ed. 2014, 53, 3205–3209; Angew. Chem. 2014, 126, 3269–3273.
- 25B. Ba, H. Cachet, B. Fotouhi, O. Gorochov, J. Electroanal. Chem. 1993, 351, 337–342.
- 26G. Wang, Q. Wang, W. Lu, J. Li, J. Phys. Chem. B 2006, 110, 22029–22034.
- 27M.-Q. Yang, C. Han, Y.-J. Xu, J. Phys. Chem. C 2015, 119, 27234–27246.
- 28F. Shaik, I. Peer, P. K. Jain, L. Amirav, Nano Lett. 2018, 18, 4370–4376.
- 29M. Anpo, M. Takeuchi, J. Catal. 2003, 216, 505–516.