Ion-Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules
Dr. Anneli Kruve
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorKenji Caprice
Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorDr. Roy Lavendomme
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorJan M. Wollschläger
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorDr. Stefan Schoder
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorDr. Hendrik V. Schröder
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorCorresponding Author
Dr. Fabien B. L. Cougnon
Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Christoph A. Schalley
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorDr. Anneli Kruve
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorKenji Caprice
Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorDr. Roy Lavendomme
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorJan M. Wollschläger
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorDr. Stefan Schoder
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorDr. Hendrik V. Schröder
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorCorresponding Author
Dr. Fabien B. L. Cougnon
Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Christoph A. Schalley
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorGraphical Abstract
Cutting the Gordian knot: Collision-induced dissociation and travelling-wave ion-mobility mass spectrometry together provide a fast screening method to identify the topology of molecular Hopf and Solomon links, a [3]catenate, and a trefoil knot, even when they coexist in quickly equilibrating dynamic combinatorial libraries.
Abstract
A rapid screening method based on traveling-wave ion-mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure-indicative fragments generated by collision-induced dissociation (CID) together with a floppiness parameter defined based on parent- and fragment-ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201904541-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. J. Bruns, J. F. Stoddart in Beauty in Chemistry (Ed.: ), Springer Berlin Heidelberg, Berlin, 2011, pp. 19–72.
10.1007/128_2011_296 Google Scholar
- 2R. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464.
- 3J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros, D. W. Sumners, J. Roca, Proc. Natl. Acad. Sci. USA 2005, 102, 9165–9169.
- 4P. Dabrowski-Tumanski, J. I. Sulkowska, Proc. Natl. Acad. Sci. USA 2017, 114, 3415–3420.
- 5J.-F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, Angew. Chem. Int. Ed. 2014, 53, 7823–7827; Angew. Chem. 2014, 126, 7957–7961.
- 6N. H. Evans, Chem. Eur. J. 2018, 24, 3101–3112.
- 7L. Zhang, A. J. Stephens, A. L. Nussbaumer, J.-F. Lemonnier, P. Jurček, I. J. Vitorica-Yrezabal, D. A. Leigh, Nat. Chem. 2018, 10, 1083–1088.
- 8J. J. Danon, D. A. Leigh, S. Pisano, A. Valero, I. J. Vitorica-Yrezabal, Angew. Chem. Int. Ed. 2018, 57, 13833–13837; Angew. Chem. 2018, 130, 14029–14033.
- 9F. Vögtle, A. Hünten, E. Vogel, S. Buschbeck, O. Safarowsky, J. Recker, A.-H. Parham, M. Knott, W. M. Müller, U. Müller, et al., Angew. Chem. Int. Ed. 2001, 40, 2468–2471;
10.1002/1521-3773(20010702)40:13<2468::AID-ANIE2468>3.0.CO;2-F CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2534–2537.
- 10G. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110–6150; Angew. Chem. 2015, 127, 6208–6249.
- 11S. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017, 56, 11166–11194; Angew. Chem. 2017, 129, 11318–11347.
- 12J.-M. Lehn, Chem. Eur. J. 1999, 5, 2455–2463.
10.1002/(SICI)1521-3765(19990903)5:9<2455::AID-CHEM2455>3.0.CO;2-H CAS Web of Science® Google Scholar
- 13S. P. Black, D. M. Wood, F. B. Schwarz, T. K. Ronson, J. J. Holstein, A. R. Stefankiewicz, C. A. Schalley, J. K. M. Sanders, J. R. Nitschke, Chem. Sci. 2016, 7, 2614–2620.
- 14T. Prakasam, R. A. Bilbeisi, R. El-Khoury, L. J. Charbonnière, M. Elhabiri, G. Esposito, J.-C. Olsen, A. Trabolsi, Dalton Trans. 2017, 46, 16474–16479.
- 15C. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2007, 46, 218–222; Angew. Chem. 2007, 119, 222–226.
- 16C. A. Schalley, P. Ghosh, M. Engeser, Int. J. Mass Spectrom. 2004, 232, 249–258.
- 17M. Ammann, A. Rang, C. A. Schalley, P. Bäuerle, Eur. J. Org. Chem. 2006, 1940–1948.
- 18P. Bäuerle, M. Ammann, M. Wilde, G. Götz, E. Mena-Osteritz, A. Rang, C. A. Schalley, Angew. Chem. Int. Ed. 2007, 46, 363–368; Angew. Chem. 2007, 119, 367–372.
- 19W. Zhang, A. Abdulkarim, F. E. Golling, H. J. Räder, K. Müllen, Angew. Chem. Int. Ed. 2017, 56, 2645–2648; Angew. Chem. 2017, 129, 2689–2692.
- 20C. A. Schalley, J. Hoernschemeyer, X. Li, G. Silva, P. Weis, Int. J. Mass Spectrom. 2003, 228, 373–388.
- 21K. Caprice, M. Pupier, A. Kruve, C. A. Schalley, F. B. L. Cougnon, Chem. Sci. 2018, 9, 1317–1322.
- 22G. Wu, C.-Y. Wang, T. Jiao, H. Zhu, F. Huang, H. Li, J. Am. Chem. Soc. 2018, 140, 5955–5961.
- 23F. B. L. Cougnon, K. Caprice, M. Pupier, A. Bauzá, A. Frontera, J. Am. Chem. Soc. 2018, 140, 12442–12450.
- 24C. A. Schalley, C. Verhaelen, F.-G. Klärner, U. Hahn, F. Vögtle, Angew. Chem. Int. Ed. 2005, 44, 477–480; Angew. Chem. 2005, 117, 481–485.
- 25C. Browne, T. K. Ronson, J. R. Nitschke, Angew. Chem. Int. Ed. 2014, 53, 10701–10705; Angew. Chem. 2014, 126, 10877–10881.