Advances in the Cathode Materials for Lithium Rechargeable Batteries
Wontae Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorShoaib Muhammad
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorChernov Sergey
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorHayeon Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorJaesang Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorCorresponding Author
Prof. Yong-Mook Kang
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorCorresponding Author
Won-Sub Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorWontae Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorShoaib Muhammad
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorChernov Sergey
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorHayeon Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorJaesang Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorCorresponding Author
Prof. Yong-Mook Kang
Department of Materials Science and Engineering, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorCorresponding Author
Won-Sub Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 South Korea
Search for more papers by this authorGraphical Abstract
Cathode materials: Developing new types of cathode materials is the best way towards the next-generation of rechargeable lithium batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state-of-the-art cathode materials are essential prerequisites.
Abstract
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium-ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next-generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state-of-the-art cathode materials are essential prerequisites. This Review presents various high-energy cathode materials which can be used to build next-generation lithium-ion batteries. It includes nickel and lithium-rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock-salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652–657.
- 2J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176.
- 3W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006–3059.
- 4C. Masquelier, L. Croguennec, Chem. Rev. 2013, 113, 6552–6591.
- 5A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater. 2016, 6, 1501010.
- 6A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater. 2012, 2, 922–939.
- 7L. Croguennec, M. R. Palacin, J. Am. Chem. Soc. 2015, 137, 3140–3156.
- 8J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 9J. Lee, D.-H. Seo, M. Balasubramanian, N. Twu, X. Li, G. Ceder, Energy Environ. Sci. 2015, 8, 3255–3265.
- 10N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, et al., Proc. Natl. Acad. Sci. 2015, 112, 7650–7655.
- 11N. Yabuuchi, Chem. Lett. 2017, 46, 412–422.
- 12F. Wu, G. Yushin, Energy Environ. Sci. 2017, 10, 435–459.
- 13A. Kraytsberg, Y. Ein-Eli, J. Solid State Electrochem. 2017, 21, 1907–1923.
- 14C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C 1980, 99, 81–85.
- 15C. Zhao, M. Avdeev, L. Chen, Y.-S. Hu, Angew. Chem. Int. Ed. 2018, 57, 7056–7060; Angew. Chem. 2018, 130, 7174–7178.
- 16P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120; Angew. Chem. 2018, 130, 106–126.
- 17R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 18J. Bréger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder, C. P. Grey, Chem. Mater. 2006, 18, 4768–4781.
- 19H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, Phys. Chem. Chem. Phys. 2012, 14, 6584.
- 20A. Boulineau, L. Simonin, J.-F. Colin, E. Canévet, L. Daniel, S. Patoux, Chem. Mater. 2012, 24, 3558–3566.
- 21H. Yu, R. Ishikawa, Y.-G. So, N. Shibata, T. Kudo, H. Zhou, Y. Ikuhara, Angew. Chem. Int. Ed. 2013, 52, 5969–5973; Angew. Chem. 2013, 125, 6085–6089.
- 22B. Ammundsen, J. Paulsen, I. Davidson, R.-S. Liu, C.-H. Shen, J.-M. Chen, L.-Y. Jang, J.-F. Lee, J. Electrochem. Soc. 2002, 149, A 431.
- 23T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, J. Mater. Chem. 2011, 21, 10179.
- 24M. M. Thackeray, M. H. Rossouw, R. J. Gummow, D. C. Liles, K. Pearce, A. De Kock, W. I. F. David, S. Hull, Electrochim. Acta 1993, 38, 1259–1267.
- 25R. J. Gummow, A. de Kock, M. M. Thackeray, Solid State Ionics 1994, 69, 59–67.
- 26D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc. 1996, 143, 2204.
- 27G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, J. M. Tarascon, J. Power Sources 1997, 69, 11–25.
- 28D. H. Jang, S. M. Oh, J. Electrochem. Soc. 1997, 144, 3342.
- 29T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 1999, 81–82, 90–94.
- 30K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 1997, 68, 604–608.
- 31Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 205.
- 32S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, J. Power Sources 2009, 189, 344–352.
- 33J. Song, D. W. Shin, Y. Lu, C. D. Amos, A. Manthiram, J. B. Goodenough, Chem. Mater. 2012, 24, 3101–3109.
- 34A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 2014, 7, 1339.
- 35J.-H. Kim, S.-T. Myung, C. S. Yoon, S. G. Kang, Y.-K. Sun, Chem. Mater. 2004, 16, 906–914.
- 36N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C. M. Julien, Ionics 2006, 12, 117–126.
- 37L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ionics 2011, 193, 32–38.
- 38M. Kunduraci, J. F. Al-Sharab, G. G. Amatucci, Chem. Mater. 2006, 18, 3585–3592.
- 39C. Delmas, A. Nadiri, J. L. Soubeyroux, Solid State Ionics 1988, 28–30, 419–423.
- 40C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Solid State Chem. 1998, 135, 228–234.
- 41J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 2000, 12, 3240–3242.
- 42S. Patoux, C. Wurm, M. Morcrette, G. Rousse, C. Masquelier, J. Power Sources 2003, 119–121, 278–284.
- 43S.-C. Yin, H. Grondey, P. Strobel, H. Huang, L. F. Nazar, J. Am. Chem. Soc. 2003, 125, 326–327.
- 44C. A. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 2008, 20, 5907–5915.
- 45G. Rousse, J. Rodriguez-Carvajal, S. Patoux, C. Masquelier, Chem. Mater. 2003, 15, 4082–4090.
- 46J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 2003, 150, A 1394.
- 47N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.-M. Tarascon, Nat. Mater. 2010, 9, 68–74.
- 48G. Rousse, J. M. Tarascon, Chem. Mater. 2014, 26, 394–406.
- 49J. Lee, D. A. Kitchaev, D.-H. Kwon, C.-W. Lee, J. K. Papp, Y.-S. Liu, Z. Lun, R. J. Clément, T. Shi, B. D. McCloskey, et al., Nature 2018, 556, 185–190.
- 50R. Chen, S. Ren, M. Knapp, D. Wang, R. Witter, M. Fichtner, H. Hahn, Adv. Energy Mater. 2015, 5, 1401814.
- 51R. Wang, X. Li, L. Liu, J. Lee, D.-H. Seo, S.-H. Bo, A. Urban, G. Ceder, Electrochem. Commun. 2015, 60, 70–73.
- 52J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 2014, 343, 519–522.
- 53A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2000, 3, 301–304.
- 54A. Van der Ven, G. Ceder, J. Power Sources 2001, 97–98, 529–531.
- 55L. Croguennec, C. Pouillerie, A. N. Mansour, C. Delmas, J. Mater. Chem. 2001, 11, 131–141.
- 56W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater. 2018, 8, 1701788.
- 57A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse, J. Hafner, Phys. Rev. B 1998, 58, 2975–2987.
- 58B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 2003, 15, 3676–3682.
- 59W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479–17487.
- 60Y. Wu, A. Manthiram, Electrochem. Solid-State Lett. 2007, 10, A 151.
- 61Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A 778.
- 62A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M. Thackeray, P. G. bruce, J. Am. Chem. Soc. 2006, 128, 8694–8698.
- 63S. Muhammad, H. Kim, Y. Kim, D. Kim, J. H. Song, J. Yoon, J.-H. Park, S.-J. Ahn, S.-H. Kang, M. M. Thackeray, et al., Nano Energy 2016, 21, 172–184.
- 64J. M. Zheng, Z. R. Zhang, X. B. Wu, Z. X. Dong, Z. Zhu, Y. Yang, J. Electrochem. Soc. 2008, 155, A 775.
- 65Y. Koyama, I. Tanaka, M. Nagao, R. Kanno, J. Power Sources 2009, 189, 798–801.
- 66P. Xiao, Z. Q. Deng, A. Manthiram, G. Henkelman, J. Phys. Chem. C 2012, 116, 23201–23204.
- 67K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, et al., Nat. Chem. 2016, 8, 684–691.
- 68E. McCalla, M. T. Sougrati, G. Rousse, E. J. Berg, A. Abakumov, N. Recham, K. Ramesha, M. Sathiya, R. Dominko, G. Van Tendeloo, et al., J. Am. Chem. Soc. 2015, 137, 4804–4814.
- 69M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, J.-M. Tarascon, Chem. Mater. 2013, 25, 1121–1131.
- 70M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, et al., Nat. Mater. 2013, 12, 827–835.
- 71E. McCalla, A. M. Abakumov, M. Saubanere, D. Foix, E. J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, et al., Science 2015, 350, 1516–1521.
- 72D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692–697.
- 73M. Ben Yahia, J. Vergnet, M. Saubanère, M.-L. Doublet, Nat. Mater. 2019, https://doi.org/10.1038/s41563-019-0318-3.
- 74D. Liu, J. Hamel-Paquet, J. Trottier, F. Barray, V. Gariépy, P. Hovington, A. Guerfi, A. Mauger, C. M. Julien, J. B. Goodenough, et al., J. Power Sources 2012, 217, 400–406.
- 75J. Yang, S. Muhammad, M. R. Jo, H. Kim, K. Song, D. A. Agyeman, Y.-I. Kim, W.-S. Yoon, Y.-M. Kang, Chem. Soc. Rev. 2016, 45, 5717–5770.
- 76Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio, I. Nakai, J. Solid State Chem. 2001, 156, 286–291.
- 77S. Mukerjee, X.. Yang, X. Sun, S.. Lee, J. McBreen, Y. Ein-Eli, Electrochim. Acta 2004, 49, 3373–3382.
- 78X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 2014, 258, 19–38.
- 79S.-C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 2003, 125, 10402–10411.
- 80S.-C. Yin, P. S. Strobel, H. Grondey, L. F. Nazar, Chem. Mater. 2004, 16, 1456–1465.
- 81S. Lee, S. S. Park, J. Phys. Chem. C 2012, 116, 25190–25197.
- 82D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2004, 7, A 30.
- 83M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater. 2005, 17, 5085–5092.
- 84S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 2008, 7, 707–711.
- 85J. Yang, J. S. Tse, J. Phys. Chem. A 2011, 115, 13045–13049.
- 86A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194.
- 87V. Srinivasan, J. Newman, J. Electrochem. Soc. 2004, 151, A 1517.
- 88N. Meethong, H.-Y. S. Huang, S. A. Speakman, W. C. Carter, Y.-M. Chiang, Adv. Funct. Mater. 2007, 17, 1115–1123.
- 89C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 2008, 7, 665–671.
- 90G. Brunetti, D. Robert, P. Bayle-Guillemaud, J. L. Rouvière, E. F. Rauch, J. F. Martin, J. F. Colin, F. Bertin, C. Cayron, Chem. Mater. 2011, 23, 4515–4524.
- 91R. Malik, F. Zhou, G. Ceder, Nat. Mater. 2011, 10, 587–590.
- 92F. Omenya, N. A. Chernova, R. Zhang, J. Fang, Y. Huang, F. Cohen, N. Dobrzynski, S. Senanayake, W. Xu, M. S. Whittingham, Chem. Mater. 2013, 25, 85–89.
- 93N. Meethong, Y.-H. Kao, M. Tang, H.-Y. Huang, W. C. Carter, Y.-M. Chiang, Chem. Mater. 2008, 20, 6189–6198.
- 94W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moškon, M. Gaberšček, Nat. Mater. 2010, 9, 448–453.
- 95H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 2014, 344, 1252817.
- 96R. Malik, A. Abdellahi, G. Ceder, J. Electrochem. Soc. 2013, 160, A 3179–A3197.
- 97L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon, Chem. Mater. 2006, 18, 5520–5529.
- 98Y. Li, F. El Gabaly, T. R. Ferguson, R. B. Smith, N. C. Bartelt, J. D. Sugar, K. R. Fenton, D. A. Cogswell, A. L. D. Kilcoyne, T. Tyliszczak, et al., Nat. Mater. 2014, 13, 1149–1156.
- 99X. Zhang, M. van Hulzen, D. P. Singh, A. Brownrigg, J. P. Wright, N. H. van Dijk, M. Wagemaker, Nat. Commun. 2015, 6, 8333.
- 100F. C. Strobridge, H. Liu, M. Leskes, O. J. Borkiewicz, K. M. Wiaderek, P. J. Chupas, K. W. Chapman, C. P. Grey, Chem. Mater. 2016, 28, 3676–3690.
- 101T. Mueller, G. Hautier, A. Jain, G. Ceder, Chem. Mater. 2011, 23, 3854–3862.
- 102R. J. Messinger, M. Ménétrier, E. Salager, A. Boulineau, M. Duttine, D. Carlier, J.-M. Ateba Mba, L. Croguennec, C. Masquelier, D. Massiot, et al., Chem. Mater. 2015, 27, 5212–5221.
- 103M. Kim, S. Lee, B. Kang, Adv. Sci. 2016, 3, 1500366.
- 104R. Tripathi, G. R. Gardiner, M. S. Islam, L. F. Nazar, Chem. Mater. 2011, 23, 2278–2284.
- 105C. Delacourt, M. Ati, J. M. Tarascon, J. Electrochem. Soc. 2011, 158, A 741.
- 106A. Urban, J. Lee, G. Ceder, Adv. Energy Mater. 2014, 4, 1400478.
- 107L. Li, F. Meng, S. Jin, Nano Lett. 2012, 12, 6030–6037.
- 108F. Wang, S.-W. Kim, D.-H. Seo, K. Kang, L. Wang, D. Su, J. J. Vajo, J. Wang, J. Graetz, Nat. Commun. 2015, 6, 6668.
- 109F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, J. Electrochem. Soc. 2003, 150, A 1318.
- 110R. F. Li, S. Q. Wu, Y. Yang, Z. Z. Zhu, J. Phys. Chem. C 2010, 114, 16813–16817.
- 111R. E. Doe, K. A. Persson, Y. S. Meng, G. Ceder, Chem. Mater. 2008, 20, 5274–5283.
- 112N. Yamakawa, M. Jiang, B. Key, C. P. Grey, J. Am. Chem. Soc. 2009, 131, 10525–10536.
- 113F. Cosandey, J. F. Al-Sharab, F. Badway, G. G. Amatucci, P. Stadelmann, Microsc. Microanal. 2007, 13, 87–95.
- 114W. Zhang, P. N. Duchesne, Z.-L. Gong, S.-Q. Wu, L. Ma, Z. Jiang, S. Zhang, P. Zhang, J.-X. Mi, Y. Yang, J. Phys. Chem. C 2013, 117, 11498–11505.
- 115J. K. Ko, K. M. Wiaderek, N. Pereira, T. L. Kinnibrugh, J. R. Kim, P. J. Chupas, K. W. Chapman, G. G. Amatucci, ACS Appl. Mater. Interfaces 2014, 6, 10858–10869.
- 116L. Li, Y.-C. K. Chen-Wiegart, J. Wang, P. Gao, Q. Ding, Y.-S. Yu, F. Wang, J. Cabana, J. Wang, S. Jin, Nat. Commun. 2015, 6, 6883.
- 117L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan, S. Jin, J. Am. Chem. Soc. 2016, 138, 2838–2848.
- 118S.-K. Jung, H. Kim, M. G. Cho, S.-P. Cho, B. Lee, H. Kim, Y.-U. Park, J. Hong, K.-Y. Park, G. Yoon, et al., Nat. Energy 2017, 2, 16208.
- 119D. Mori, H. Kobayashi, M. Shikano, H. Nitani, H. Kageyama, S. Koike, H. Sakaebe, K. Tatsumi, J. Power Sources 2009, 189, 676–680.
- 120S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 2014, 4, 1300787.
- 121D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, K. Amine, Electrochem. commun. 2002, 4, 620–625.
- 122H. Kobayashi, M. Shikano, S. Koike, H. Sakaebe, K. Tatsumi, J. Power Sources 2007, 174, 380–386.
- 123M. Shikano, H. Kobayashi, S. Koike, H. Sakaebe, E. Ikenaga, K. Kobayashi, K. Tatsumi, J. Power Sources 2007, 174, 795–799.
- 124H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, J. Power Sources 2012, 207, 134–140.
- 125C. H. Lei, J. Bareño, J. G. Wen, I. Petrov, S.-H. Kang, D. P. Abraham, J. Power Sources 2008, 178, 422–433.
- 126N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404–4419.
- 127S. Hy, F. Felix, J. Rick, W.-N. Su, B. J. Hwang, J. Am. Chem. Soc. 2014, 136, 999–1007.
- 128J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Chem. Mater. 2012, 24, 2692–2697.
- 129N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan, C. Jordy, C. Delmas, Chem. Mater. 2008, 20, 4815–4825.
- 130D. Mohanty, A. S. Sefat, J. Li, R. A. Meisner, A. J. Rondinone, E. A. Payzant, D. P. Abraham, D. L. Wood III, C. Daniel, Phys. Chem. Chem. Phys. 2013, 15, 19496.
- 131A. Ito, Y. Sato, T. Sanada, M. Hatano, H. Horie, Y. Ohsawa, J. Power Sources 2011, 196, 6828–6834.
- 132M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, et al., ACS Nano 2013, 7, 760–767.
- 133A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T. A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 2018, 3, 641–647.
- 134N. P. W. Pieczonka, Z. Liu, P. Lu, K. L. Olson, J. Moote, B. R. Powell, J.-H. Kim, J. Phys. Chem. C 2013, 117, 15947–15957.
- 135T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, S. M. Oh, J. Power Sources 2012, 215, 312–316.
- 136W. Choi, A. Manthiram, J. Electrochem. Soc. 2006, 153, A 1760.
- 137D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.-J. Kim, S. Choi, J. Power Sources 2006, 162, 780–789.
- 138J.-H. Kim, C. S. Yoon, S.-T. Myung, J. Prakash, Y.-K. Sun, Electrochem. Solid-State Lett. 2004, 7, A 216.
- 139M. Lin, L. Ben, Y. Sun, H. Wang, Z. Yang, L. Gu, X. Yu, X.-Q. Yang, H. Zhao, R. Yu, et al., Chem. Mater. 2015, 27, 292–303.
- 140J. Kang, V. Mathew, J. Gim, S. Kim, J. Song, W. Bin Im, J. Han, J. Y. Lee, J. Kim, Sci. Rep. 2014, 4, 4047.
- 141H. Huang, S.-C. Yin, T. Kerr, N. Taylor, L. F. Nazar, Adv. Mater. 2002, 14, 1525–1528.
- 142L. Wang, J. Xu, C. Wang, X. Cui, J. Li, Y.-N. Zhou, RSC Adv. 2015, 5, 71684–71691.
- 143K. Amine, J. Liu, I. Belharouak, Electrochem. Commun. 2005, 7, 669–673.
- 144M.-S. Song, Y.-M. Kang, Y.-I. Kim, K.-S. Park, H.-S. Kwon, Inorg. Chem. 2009, 48, 8271–8275.
- 145M. Dubarry, B. Y. Liaw, J. Power Sources 2009, 194, 541–549.
- 146K. Striebel, J. Shim, A. Sierra, H. Yang, X. Song, R. Kostecki, K. McCarthy, J. Power Sources 2005, 146, 33–38.
- 147L. Castro, R. Dedryvère, J.-B. Ledeuil, J. Bréger, C. Tessier, D. Gonbeau, J. Electrochem. Soc. 2012, 159, A 357–A363.
- 148K.-S. Park, D. Im, A. Benayad, A. Dylla, K. J. Stevenson, J. B. Goodenough, Chem. Mater. 2012, 24, 2673–2683.
- 149P. Liu, J. J. Vajo, J. S. Wang, W. Li, J. Liu, J. Phys. Chem. C 2012, 116, 6467–6473.
- 150X. Hua, R. Robert, L.-S. Du, K. M. Wiaderek, M. Leskes, K. W. Chapman, P. J. Chupas, C. P. Grey, J. Phys. Chem. C 2014, 118, 15169–15184.
- 151G. G. Amatucci, N. Pereira, J. Fluorine Chem. 2007, 128, 243–262.
- 152F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, et al., J. Am. Chem. Soc. 2011, 133, 18828–18836.
- 153S. Ferrari, M. C. Mozzati, M. Lantieri, G. Spina, D. Capsoni, M. Bini, Sci. Rep. 2016, 6, 27896.
- 154Y. H. Jung, W. B. Park, M. Pyo, K.-S. Sohn, D. Ahn, J. Mater. Chem. A 2017, 5, 8939–8945.
- 155S. S. Fedotov, N. R. Khasanova, A. S. Samarin, O. A. Drozhzhin, D. Batuk, O. M. Karakulina, J. Hadermann, A. M. Abakumov, E. V. Antipov, Chem. Mater. 2016, 28, 411–415.
- 156L. Qu, D. Luo, S. Fang, Y. Liu, L. Yang, S. Hirano, C.-C. Yang, J. Power Sources 2016, 307, 69–76.
- 157D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng, J. Ma, Electrochim. Acta 2011, 56, 2823–2827.
- 158D.-W. Han, S.-J. Lim, Y.-I. Kim, S. H. Kang, Y. C. Lee, Y.-M. Kang, Chem. Mater. 2014, 26, 3644–3650.
- 159F. Lu, Y. Zhou, J. Liu, Y. Pan, Electrochim. Acta 2011, 56, 8833–8838.
- 160R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda, M. Takano, J. Solid State Chem. 1994, 110, 216–225.
- 161C. Delmas, I. Saadoune, A. Rougier, J. Power Sources 1993, 44, 595–602.
- 162E. Zhecheva, R. Stoyanova, Solid State Ionics 1993, 66, 143–149.
- 163S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 2002, 1, 123–128.
- 164J. Reed, G. Ceder, Electrochem. Solid-State Lett. 2002, 5, A 145.
- 165G. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-I. Jang, B. Huang, Nature 1998, 392, 694–696.
- 166A. Gutierrez, N. A. Benedek, A. Manthiram, Chem. Mater. 2013, 25, 4010–4016.
- 167C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, C. Delmas, J. Electrochem. Soc. 2000, 147, 2061.
- 168K. Kang, G. Ceder, Phys. Rev. B 2006, 74, 094105.
- 169H. Arai, S. Okada, Y. Sakurai, J. Yamaki, J. Power Sources 1997, 68, 716–719.
- 170L. Croguennec, E. Suard, P. Willmann, C. Delmas, Chem. Mater. 2002, 14, 2149–2157.
- 171Y.-M. Kang, Y.-I. Kim, M.-W. Oh, R.-Z. Yin, Y. Lee, D.-W. Han, H.-S. Kwon, J. H. Kim, G. Ramanath, Energy Environ. Sci. 2011, 4, 4978.
- 172C. X. Ding, Y. C. Bai, X. Y. Feng, C. H. Chen, Solid State Ionics 2011, 189, 69–73.
- 173E. Levi, M. D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider, L. Heider, Solid State Ionics 1999, 126, 97–108.
- 174O. Sha, Z. Qiao, S. Wang, Z. Tang, H. Wang, X. Zhang, Q. Xu, Mater. Res. Bull. 2013, 48, 1606–1611.
- 175T. A. Arunkumar, A. Manthiram, Electrochem. Solid-State Lett. 2005, 8, A 403.
- 176Z. Yang, Y. Jiang, J.-H. Kim, Y. Wu, G.-L. Li, Y.-H. Huang, Electrochim. Acta 2014, 117, 76–83.
- 177M. N. Ates, Q. Jia, A. Shah, A. Busnaina, S. Mukerjee, K. M. Abraham, J. Electrochem. Soc. 2014, 161, A 290–A301.
- 178Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, J. Mater. Chem. 2010, 20, 7606.
- 179M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, K. Tatsumi, J. Akimoto, H. Shibuya, J. Imaizumi, J. Power Sources 2011, 196, 3611–3622.
- 180M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, J. Imaizumi, H. Shibuya, J. Akimoto, J. Power Sources 2013, 221, 427–434.
- 181Z. Tang, Z. Wang, X. Li, W. Peng, J. Power Sources 2012, 204, 187–192.
- 182J.-H. Kim, C. W. Park, Y.-K. Sun, Solid State Ionics 2003, 164, 43–49.
- 183O. Sha, Z. Tang, S. Wang, W. Yuan, Z. Qiao, Q. Xu, L. Ma, Electrochim. Acta 2012, 77, 250–255.
- 184B. Song, M. O. Lai, L. Lu, Electrochim. Acta 2012, 80, 187–195.
- 185L. F. Jiao, M. Zhang, H. T. Yuan, M. Zhao, J. Guo, W. Wang, X. Di Zhou, Y. M. Wang, J. Power Sources 2007, 167, 178–184.
- 186Q. Liu, K. Du, G. Hu, Z. Peng, Y. Cao, W. Liu, Solid State Ionics 2012, 227, 23–29.
- 187J. Wang, W. Lin, B. Wu, J. Zhao, Electrochim. Acta 2014, 145, 245–253.
- 188R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado, E. Zhecheva, R. Stoyanova, Chem. Mater. 2004, 16, 1573–1579.
- 189M.-C. Yang, B. Xu, J.-H. Cheng, C.-J. Pan, B.-J. Hwang, Y. S. Meng, Chem. Mater. 2011, 23, 2832–2841.
- 190S. Hy, J.-H. Cheng, J.-Y. Liu, C.-J. Pan, J. Rick, J.-F. Lee, J.-M. Chen, B. J. Hwang, Chem. Mater. 2014, 26, 6919–6927.
- 191R. Alcántara, M. Jaraba, P. Lavela, J. M. Lloris, C. Pérez Vicente, J. L. Tirado, J. Electrochem. Soc. 2005, 152, A 13.
- 192G. B. Zhong, Y. Y. Wang, Y. Q. Yu, C. H. Chen, J. Power Sources 2012, 205, 385–393.
- 193C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics 1995, 81, 167–170.
- 194M. C. Kim, K.-W. Nam, E. Hu, X.-Q. Yang, H. Kim, K. Kang, V. Aravindan, W.-S. Kim, Y.-S. Lee, ChemSusChem 2014, 7, 829–834.
- 195N. Yabuuchi, Chem. Rec. 2019, 19, 690–707.
- 196N. Yabuuchi, M. Nakayama, M. Takeuchi, S. Komaba, Y. Hashimoto, T. Mukai, H. Shiiba, K. Sato, Y. Kobayashi, A. Nakao, et al., Nat. Commun. 2016, 7, 13814.
- 197J. Lee, J. K. Papp, R. J. Clément, S. Sallis, D.-H. Kwon, T. Shi, W. Yang, B. D. McCloskey, G. Ceder, Nat. Commun. 2017, 8, 981.
- 198R. A. House, L. Jin, U. Maitra, K. Tsuruta, J. W. Somerville, D. P. Förstermann, F. Massel, L. Duda, M. R. Roberts, P. G. Bruce, Energy Environ. Sci. 2018, 11, 926–932.
- 199W. D. Richards, S. T. Dacek, D. A. Kitchaev, G. Ceder, Adv. Energy Mater. 2018, 8, 1701533.
- 200N. Takeda, S. Hoshino, L. Xie, S. Chen, I. Ikeuchi, R. Natsui, K. Nakura, N. Yabuuchi, J. Power Sources 2017, 367, 122–129.
- 201S. Ren, R. Chen, E. Maawad, O. Dolotko, A. A. Guda, V. Shapovalov, D. Wang, H. Hahn, M. Fichtner, Adv. Sci. 2015, 2, 1500128.
- 202M. R. Jo, Y.-I. Kim, Y. Kim, J. S. Chae, K. C. Roh, W.-S. Yoon, Y.-M. Kang, ChemSusChem 2014, 7, 2248–2254.
- 203S. H. Min, M. R. Jo, S.-Y. Choi, Y.-I. Kim, Y.-M. Kang, Adv. Energy Mater. 2016, 6, 1501717.
- 204J. Xiang, C. Chang, L. Yuan, J. Sun, Electrochem. Commun. 2008, 10, 1360–1363.
- 205H.-J. Kweon, S. J. Kim, D. G. Park, J. Power Sources 2000, 88, 255–261.
- 206H. Omanda, T. Brousse, C. Marhic, D. M. Schleich, J. Electrochem. Soc. 2004, 151, A 922.
- 207F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628–632.
- 208Y. Huang, J. Chen, J. Ni, H. Zhou, X. Zhang, J. Power Sources 2009, 188, 538–545.
- 209L. Tan, H. Liu, Russ. J. Electrochem. 2011, 47, 156–160.
- 210B. Park, H. Kim, H. J. Bang, J. Prakash, Y. Sun, Ind. Eng. Chem. Res. 2008, 47, 3876–3882.
- 211J. Cho, T.-J. Kim, J. Kim, M. Noh, B. Park, J. Electrochem. Soc. 2004, 151, A 1899.
- 212S. B. Jang, S.-H. Kang, K. Amine, Y. C. Bae, Y.-K. Sun, Electrochim. Acta 2005, 50, 4168–4173.
- 213X. Xiong, Z. Wang, X. Yin, H. Guo, X. Li, Mater. Lett. 2013, 110, 4–9.
- 214J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, X. Pan, Electrochim. Acta 2010, 55, 6879–6884.
- 215L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269–284.
- 216Y. Wang, R. Mei, X. Yang, Ceram. Int. 2014, 40, 8439–8444.
- 217S. Yoon, C. Liao, X.-G. Sun, C. A. Bridges, R. R. Unocic, J. Nanda, S. Dai, M. P. Paranthaman, J. Mater. Chem. 2012, 22, 4611.
- 218J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li, et al., J. Mater. Chem. 2012, 22, 7537.
- 219C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132–2135.
- 220H. Ni, J. Liu, L.-Z. Fan, Nanoscale 2013, 5, 2164.
- 221X. Fang, M. Ge, J. Rong, C. Zhou, ACS Nano 2014, 8, 4876–4882.
- 222J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, J. R. Ramos Barrado, J. Electrochem. Soc. 2007, 154, A 178.
- 223L. Xiong, W. Liu, Y. Wu, Z. He, Appl. Surf. Sci. 2015, 328, 531–535.
- 224H. Sclar, O. Haik, T. Menachem, J. Grinblat, N. Leifer, A. Meitav, S. Luski, D. Aurbach, J. Electrochem. Soc. 2012, 159, A 228–A237.
- 225J. C. Arrebola, A. Caballero, L. Hernán, J. Morales, J. Power Sources 2010, 195, 4278–4284.
- 226J. S. Chae, S.-B. Yoon, W.-S. Yoon, Y.-M. Kang, S.-M. Park, J.-W. Lee, K. C. Roh, J. Alloys Compd. 2014, 601, 217–222.
- 227X. Yang, T. Yang, S. Liang, X. Wu, H. Zhang, J. Mater. Chem. A 2014, 2, 10359–10364.
- 228N. Zhang, T. Yang, Y. Lang, K. Sun, J. Alloys Compd. 2011, 509, 3783–3786.
- 229X. Fang, M. Ge, J. Rong, C. Zhou, J. Mater. Chem. A 2013, 1, 4083.
- 230J. Li, Y. Zhang, J. Li, L. Wang, X. He, J. Gao, Ionics 2011, 17, 671–675.
- 231Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan, Y. Bai, Electrochim. Acta 2015, 158, 73–80.
- 232J. Chong, S. Xun, J. Zhang, X. Song, H. Xie, V. Battaglia, R. Wang, Chem. Eur. J. 2014, 20, 7479–7485.
- 233J. Chong, S. Xun, X. Song, G. Liu, V. S. Battaglia, Nano Energy 2013, 2, 283–293.
- 234H. Huang, S.-C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 2001, 4, A 170.
- 235C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochem. Solid-State Lett. 2006, 9, A 352.
- 236R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett. 2010, 10, 4123–4127.
- 237J. C. Kim, D.-H. Seo, H. Chen, G. Ceder, Adv. Energy Mater. 2015, 5, 1401916.
- 238J. Shin, J. Yang, C. Sergey, M.-S. Song, Y.-M. Kang, Adv. Sci. 2017, 4, 1700128.
- 239F. Wang, H.-C. Yu, M.-H. Chen, L. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y. Zhu, G. G. Amatucci, J. Graetz, Nat. Commun. 2012, 3, 1201.
- 240T. Li, Z. X. Chen, Y. L. Cao, X. P. Ai, H. X. Yang, Electrochim. Acta 2012, 68, 202–205.
- 241J. Geder, H. E. Hoster, A. Jossen, J. Garche, D. Y. W. Yu, J. Power Sources 2014, 257, 286–292.
- 242M. M. Shaijumon, E. Perre, B. Daffos, P.-L. Taberna, J.-M. Tarascon, P. Simon, Adv. Mater. 2010, 22, 4978–4981.
- 243T. S. Arthur, D. J. Bates, N. Cirigliano, D. C. Johnson, P. Malati, J. M. Mosby, E. Perre, M. T. Rawls, A. L. Prieto, B. Dunn, MRS Bull. 2011, 36, 523–531.
- 244J. Li, M. C. Leu, R. Panat, J. Park, Mater. Des. 2017, 119, 417–424.
- 245J. Li, Y. Gao, X. Liang, J. Park, Batteries Supercaps 2019, 2, 139–143.
- 246X. Fan, C. Luo, J. Lamb, Y. Zhu, K. Xu, C. Wang, Nano Lett. 2015, 15, 7650–7656.
- 247D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, X. Zhang, Energy Environ. Sci. 2012, 5, 8538.
- 248C. Li, X. Mu, P. A. van Aken, J. Maier, Adv. Energy Mater. 2013, 3, 113–119.
- 249J. Liu, W. Liu, S. Ji, Y. Wan, M. Gu, H. Yin, Y. Zhou, Chem. Eur. J. 2014, 20, 5815–5820.
- 250B. Hai, A. K. Shukla, H. Duncan, G. Chen, J. Mater. Chem. A 2013, 1, 759–769.
- 251Z. Chen, R. Zhao, P. Du, H. Hu, T. Wang, L. Zhu, H. Chen, J. Mater. Chem. A 2014, 2, 12835–12848.
- 252S. Kuppan, H. Duncan, G. Chen, Phys. Chem. Chem. Phys. 2015, 17, 26471–26481.
- 253S. Kuppan, Y. Xu, Y. Liu, G. Chen, Nat. Commun. 2017, 8, 14309.
- 254H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, et al., ACS Appl. Mater. Interfaces 2016, 8, 4661–4675.
- 255M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno, J. Am. Chem. Soc. 2010, 132, 15268–15276.
- 256K. R. Chemelewski, D. W. Shin, W. Li, A. Manthiram, J. Mater. Chem. A 2013, 1, 3347.
- 257K. R. Chemelewski, E.-S. Lee, W. Li, A. Manthiram, Chem. Mater. 2013, 25, 2890–2897.
- 258T. Maiyalagan, K. R. Chemelewski, A. Manthiram, ACS Catal. 2014, 4, 421–425.
- 259M. Nakajima, N. Yabuuchi, Chem. Mater. 2017, 29, 6927–6935.
- 260J. R. Croy, M. Balasubramanian, K. G. Gallagher, A. K. Burrell, Acc. Chem. Res. 2015, 48, 2813–2821.
- 261M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanère, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, et al., Nat. Mater. 2015, 14, 230–238.
- 262P. E. Pearce, A. J. Perez, G. Rousse, M. Saubanère, D. Batuk, D. Foix, E. McCalla, A. M. Abakumov, G. Van Tendeloo, M.-L. Doublet, et al., Nat. Mater. 2017, 16, 580–586.
- 263Y. Kim, J. Yoo, D. Jang, S. Muhammad, M. Jeong, W. Choi, W.-S. Yoon, J. Mater. Chem. A 2018, 6, 13743–13750.
- 264S. Choi, J. Yoon, S. Muhammad, W. Yoon, J. Electrochem. Sci. Technol. 2013, 4, 34–40.
- 265M. Kunduraci, G. G. Amatucci, J. Electrochem. Soc. 2006, 153, A 1345–A1352.