One-Dimensional Fe2P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics
Yang Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorWenyao Zhen
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Yinghui Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorJianhua Liu
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorLonghai Jin
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorTianqi Zhang
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorSongtao Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorYing Zhao
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Prof. Shuyan Song
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorProf. Chengyu Li
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorDr. Junjie Zhu
Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Dr. Yang Yang
Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 China
Search for more papers by this authorProf. Hongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorYang Liu
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorWenyao Zhen
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Yinghui Wang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorJianhua Liu
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorLonghai Jin
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorTianqi Zhang
Department of Radiology, The Second Hospital of Jilin University, Changchun, 130022 Jilin, China
Search for more papers by this authorSongtao Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorYing Zhao
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorCorresponding Author
Prof. Shuyan Song
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorProf. Chengyu Li
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
Search for more papers by this authorDr. Junjie Zhu
Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Dr. Yang Yang
Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433 China
Search for more papers by this authorProf. Hongjie Zhang
State Key Laboratory of Rare Earth Resource Utilization, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
University of Science and Technology of China, Hefei, 230026 Anhui, China
Search for more papers by this authorGraphical Abstract
Sound and light: Biocompatible 1D ferrous phosphide nanorods (FP NRs) have ultrasound (US) and photothermal (PT)-enhanced Fenton properties and high photothermal conversion efficiency (56.6 %) in the NIR II window, showing excellent synergistic therapeutic properties. FP NRs can also be used as a photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) agent.
Abstract
The stringent reaction conditions for an effective Fenton reaction (pH range of 3–4) hinders its application in cancer therapy. Therefore, how to improve the efficiency of the Fenton reaction in a tumor site has been the main obstacle in chemodynamic therapy (CDT). Herein, we report biocompatible one-dimensional (1D) ferrous phosphide nanorods (FP NRs) with ultrasound (US)- and photothermal (PT)-enhanced Fenton properties and excellent photothermal conversion efficiency (56.6 %) in the NIR II window, showing synergistic therapeutic properties. Additionally, the high photothermal conversion efficiency and excellent traverse relaxivity (277.79 mm−1 s−1) of the FP NRs means they are excellent photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) agents. This is the first report on exploiting the response of metallic phosphides to NIR II laser (1064 nm) and ultrasound to improve the CDT effect with a high therapeutic effect and PA/MR imaging.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201813702-sup-0001-misc_information.pdf3.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Lin, J. Song, L. Song, K. Ke, Y. Liu, Z. Zhou, Z. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H. Yang, X. Chen, Angew. Chem. Int. Ed. 2018, 57, 4902–4907; Angew. Chem. 2018, 130, 4996–5000;
- 1bH. Lin, Y. Chen, J. Shi, Chem. Soc. Rev. 2018, 47, 1938–1958;
- 1cR. C. Gilson, K. C. L. Black, D. D. Lane, S. Achilefu, Angew. Chem. Int. Ed. 2017, 56, 10717–10720; Angew. Chem. 2017, 129, 10857–10860;
- 1dX. Li, D. Lee, J. Huang, J. Yoon, Angew. Chem. Int. Ed. 2018, 57, 9885–9890; Angew. Chem. 2018, 130, 10033–10038.
- 2
- 2aZ. Zhou, J. Song, R. Tian, Z. Yang, G. Yu, L. Lin, G. Zhang, W. Fan, F. Zhang, G. Niu, L. Nie, X. Chen, Angew. Chem. Int. Ed. 2017, 56, 6492–6496; Angew. Chem. 2017, 129, 6592–6596;
- 2bD. Cioloboc, C. Kennedy, E. N. Boice, E. R. Clark, D. M. Kurtz, Jr., Biomacromolecules 2018, 19, 178–187;
- 2cZ. Shen, J. Song, B. C. Yung, Z. Zhou, A. Wu, X. Chen, Adv. Mater. 2018, 30, 1704007;
- 2dH. Ranji-Burachaloo, P. A. Gurr, D. E. Dunstan, G. G. Qiao, ACS Nano 2018, https://doi.org/10.1021/acsnano.8b07635;
- 2eZ. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 2019, 58, 946–956; Angew. Chem. 2019, 131, 958–968;
- 2fY. Liu, Y. Jiang, M. Zhang, Z. Tang, M. He, W. Bu, Acc. Chem. Res. 2018, 51, 2502;
- 2gL. Feng, R. Xie, C. Wang, S. Gai, F. He, D. Yang, P. Yang, J. Lin, ACS Nano 2018, 12, 11000.
- 3
- 3aJ. Kim, H. R. Cho, H. Jeon, D. Kim, C. Cheng, N. Lee, S. H. Choi, T. Hyeon, J. Am. Chem. Soc. 2017, 139, 10992–10995;
- 3bM. Hou, L. Wang, Y. Chen, J. Shi, Nat. Commun. 2017, 8, 357.
- 4C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Angew. Chem. Int. Ed. 2016, 55, 2101–2106; Angew. Chem. 2016, 128, 2141–2146.
- 5S. Giannakis, M. I. P. Lopez, D. Spuhler, J. A. S. Perez, P. F. Lbanez, C. Pulgarin, Appl. Catal. B 2016, 199, 199–223.
- 6
- 6aP. Hu, T. Wu, W. Fan, L. Chen, Y. Liu, D. Ni, W. Bu, J. Shi, Biomaterials 2017, 141, 86–95;
- 6bY. Liu, W. Zhen, L. Jin, S. Zhang, G. Sun, T. Zhang, X. Xu, S. Song, Y. Wang, Ji. Liu, H. Zhang, ACS Nano 2018, 12, 4886–4893;
- 6cH. Bi, Y. Dai, P. Yang, J. Xu, D. Yang, S. Gai, F. He, B. Liu, C. Zhong, G. An, J. Lin, Small 2018, 14, 1703809.
- 7Z. Tang, H. Zhang, Y. Liu, D. Ni, H. Zhang, J. Zhang, Z. Yao, M. He, J. Shi, W. Bu, Adv. Mater. 2017, 29, 1701683.
- 8
- 8aY. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914–924;
- 8bY. Chen, L. Cheng, Z. Dong, Y. Chao, H. Lei, H. Zhao, J. Wang, Z. Liu, Angew. Chem. Int. Ed. 2017, 56, 12991–12996; Angew. Chem. 2017, 129, 13171–13176;
- 8cL. Wang, J. Bai, Y. Li, Y. Huang, Angew. Chem. Int. Ed. 2008, 47, 2439–2442; Angew. Chem. 2008, 120, 2473–2476;
- 8dJ. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. Kim, S. K. Kim, M. Cho, T. Hyeon, Angew. Chem. Int. Ed. 2006, 45, 7754–7758; Angew. Chem. 2006, 118, 7918–7922;
- 8eS. Shen, C. Zhu, D. Huo, M. Yang, J. Xue, Y. Xia, Angew. Chem. Int. Ed. 2017, 56, 8801–8804; Angew. Chem. 2017, 129, 8927–8930;
- 8fJ. Mou, P. Li, C. Liu, H. Xu, L. Song, J. Wang, K. Zhang, Y. Chen, J. Shi, H. Chen, Small 2015, 11, 2275–2283;
- 8gJ. Mou, C. Liu, P. Li, Y. Chen, H. Xu, C. Wei, L. Song, J. Shi, H. Chen, Biomaterials 2015, 57, 12–21;
- 8hX. Du, C. Zhao, M. Zhou, T. Ma, H. Huang, M. Jaroniec, X. Zhang, S. Qiao, Small 2017, 13, 1602592.
- 9
- 9aH. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, J. Am. Chem. Soc. 2017, 139, 16235–16247;
- 9bX. Wang, Y. Ma, X. Sheng, Y. Wang, H. Xu, Nano Lett. 2018, 18, 2217–2225;
- 9cX. Han, J. Huang, X. Jing, D. Yang, H. Lin, Z. Wang, P. Li, Y. Chen, ACS Nano 2018, 12, 4545–4555;
- 9dB. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7483–7487; Angew. Chem. 2018, 130, 7605–7609;
- 9eG. Xu, Q. Yan, X. Lv, Y. Zhu, K. Xin, B. Shi, R. Wang, J. Chen, W. Gao, P. Shi, C. Fan, C. Zhao, H. Tian, Angew. Chem. Int. Ed. 2018, 57, 3626–3630; Angew. Chem. 2018, 130, 3688–3692.
- 10
- 10aX. Qian, X. Han, Y. Chen, Biomaterials 2017, 142, 13–30;
- 10bP. Huang, X. Qian, Y. Chen, L. Yu, H. Lin, L. Wang, Y. Zhu, J. Shi, J. Am. Chem. Soc. 2017, 139, 1275–1284.
- 11M. Hosseinia, M. R. R. Kahkhab, A. Fakhric, S. Tahamid, M. J. Lariche, J. Photochem. Photobiol. B 2018, 185, 24–31.
- 12M. I. Majeed, J. Guo, W. Yan, B. Tan, Polymer 2016, 8, 392.
- 13
- 13aJ. Park, B. Koo, Y. Hwang, C. Bae, K. An, J. Park, H. M. Park, T. Hyeon, Angew. Chem. Int. Ed. 2004, 43, 2282–2285; Angew. Chem. 2004, 116, 2332–2335;
- 13bE. Muthuswamy, P. R. Kharel, G. Lawes, S. L. Brock, ACS Nano 2009, 3, 2383–2393.
- 14
- 14aH. Kim, Y. Chae, D. H. Lee, M. Kim, J. Huh, Y. Kim, H. Kim, H. J. Kim, S. O. Kim, H. Baik, K. Choi, J. S. Kim, G. Yi, K. Lee, Angew. Chem. Int. Ed. 2010, 49, 5712–5716; Angew. Chem. 2010, 122, 5848–5852;
- 14bX. Zhang, S. Zhu, L. Xia, C. Si, F. Qu, F. Qu, Chem. Commun. 2018, 54, 1201–1204.
- 15
- 15aC. M. Hessel, V. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel, Nano Lett. 2011, 11, 2560–2566;
- 15bX. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, J. Am. Chem. Soc. 2014, 136, 15684–15693;
- 15cW. Zhen, Y. Liu, L. Lin, J. Bai, X. Jia, H. Tian, X. Jiang, Angew. Chem. Int. Ed. 2018, 57, 10309–10313; Angew. Chem. 2018, 130, 10466–10470.
- 16X. Pan, L. Bai, H. Wang, Q. Wu, H. Wang, S. Liu, B. Xu, X. Shi, H. Liu, Adv. Mater. 2018, 30, 1800180.
- 17
- 17aS. Rahim Pouran, A. Bayrami, A. R. A. Aziz, W. M. A. W. Daud, M. S. Shafeeyan, J. Mol. Liq. 2016, 222, 1076–1084;
- 17bY. Li, F. Li, F. Li, F. Yuan, P. Wei, Environ. Sci. Pollut. Res. 2015, 22, 18446–18455;
- 17cS. Vajnhandl, A. M. L. Marechal, Dyes Pigm. 2005, 65, 89–101.
- 18C. Xu, S. Sun, Adv. Drug Delivery Rev. 2013, 65, 732.