Dual Photoredox/Copper Catalysis for the Remote C(sp3)−H Functionalization of Alcohols and Alkyl Halides by N-Alkoxypyridinium Salts
Dr. Xu Bao
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorDr. Qian Wang
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jieping Zhu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorDr. Xu Bao
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorDr. Qian Wang
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jieping Zhu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
Search for more papers by this authorGraphical Abstract
Abstract
Under mild dual photoredox/copper catalysis, the reaction of N-alkoxypyridinium salts with readily available silyl reagents (TMSN3, TMSCN, TMSNCS) afforded δ-azido, δ-cyano, and δ-thiocyanato alcohols in high yields. The reaction went through a domino process involving alkoxy radical generation, 1,5-hydrogen atom transfer (1,5-HAT) and copper-catalyzed functionalization of the resulting C-centered radical. Conditions for catalytic enantioselective δ-C(sp3)−H cyanation were also documented.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201813356-sup-0001-misc_information.pdf13.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Cainelli, M. L. Mihaiović, D. Arigoni, O. Jeger, Helv. Chim. Acta 1959, 42, 1124.
- 2D. H. R. Barton, Pure Appl. Chem. 1968, 16, 1.
- 3For reviews, see:
- 3aG. Majetich, K. Wheless, Tetrahedron 1995, 51, 7095;
- 3bŽ. Čeković, Tetrahedron 2003, 59, 8073;
- 3cS. Chiba, H. Chen, Org. Biomol. Chem. 2014, 12, 4051;
- 3dJ.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044;
- 3eL. M. Stateman, K. M. Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569.
- 4
- 4aF. D. Greene, M. L. Savitz, H. H. Lau, F. D. Osterholtz, W. N. Smith, J. Am. Chem. Soc. 1961, 83, 2196;
- 4bC. Walling, A. Padwa, J. Am. Chem. Soc. 1961, 83, 2207;
- 4cC. C. Conzález, A. R. Kennedy, E. L. León, C. Riesco-Fagundo, E. Suárez, Chem. Eur. J. 2003, 9, 5800;
- 4dA. Boto, D. Hernández, R. Hernández, E. Suarez, J. Org. Chem. 2003, 68, 5310.
- 5
- 5aK. Jia, F. Zhang, H. Huang, Y. Chen, J. Am. Chem. Soc. 2016, 138, 1514;
- 5bH. G. Yayla, H. Wang, K. T. Tarantino, H. S. Orbe, R. R. Knowles, J. Am. Chem. Soc. 2016, 138, 10794.
- 6
- 6aFor transition metal complexes as photoredox catalysts, see: C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322;
- 6bDyes as photoredox catalysts, see: D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355.
- 7A. L. J. Beckwith, B. P. Hay, G. M. Williams, J. Chem. Soc. Chem. Commun. 1989, 1202.
- 8A. L. J. Beckwith, B. P. Hay, J. Am. Chem. Soc. 1988, 110, 4415.
- 9For reviews, see:
- 9aH. Togo, M. Katohgi, Synlett 2001, 0565;
- 9bJ. Hartung, T. Gottwald, K. Špehar, Synthesis 2002, 1469;
- 9cJ.-J. Guo, A. Hu, Z. Zuo, Tetrahedron Lett. 2018, 59, 2103;
- 9dK. Jia, Y. Chen, Chem. Commun. 2018, 54, 6105.
- 10
- 10aP. C. Too, Y. L. Tnay, S. Chiba, Beilstein J. Org. Chem. 2013, 9, 1217;
- 10bT. Hashimoto, D. Hirose, T. Taniguchi, Angew. Chem. Int. Ed. 2014, 53, 2730; Angew. Chem. 2014, 126, 2768.
- 11
- 11aB. Acott, A. L. J. Beckwith, Aust. J. Chem. 1964, 17, 1342;
- 11bZ. Cekovic, M. M. Green, J. Am. Chem. Soc. 1974, 96, 3000.
- 12
- 12aH. Guan, S. Sun, Y. Mao, L. Chen, R. Lu, J. Huang, L. Liu, Angew. Chem. Int. Ed. 2018, 57, 11413; Angew. Chem. 2018, 130, 11583;
- 12bR. Kundu, Z. T. Ball, Org. Lett. 2010, 12, 2460.
- 13
- 13aE. I. Léon, Á. Martin, I. Pérez-Martin, L. M. Quintanal, E. Suárez, Eur. J. Org. Chem. 2012, 3818;
- 13bH. Zhu, J. G. Wickenden, N. E. Campbell, J. C. T. Leung, K. M. Johnson, G. M. Sammis, Org. Lett. 2009, 11, 2019;
- 13cH. Zhu, J. C. T. Leung, G. M. Sammis, J. Org. Chem. 2015, 80, 965.
- 14
- 14aX. Wu, M. Wang, L. Huan, D. Wang, J. Wang, C. Zhu, Angew. Chem. Int. Ed. 2018, 57, 1640; Angew. Chem. 2018, 130, 1656;
- 14bX. Wu, H. Zhang, N. Tang, Z. Wu, D. Wang, M. Ji, Y. Xu, M. Wang, C. Zhu, Nat. Commun. 2018, 9, 3343;
- 14cI. Kim, B. Park, G. Kang, J. Kim, H. Jung, H. Lee, M.-H. Baik, S. Hong, Angew. Chem. Int. Ed. 2018, 57, 15517; Angew. Chem. 2018, 130, 15743.
- 15
- 15aJ. Zhang, Y. Li, F. Zhang, C. Hu, Y. Chen, Angew. Chem. Int. Ed. 2016, 55, 1872; Angew. Chem. 2016, 128, 1904;
- 15bC. Wang, K. Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55, 13495; Angew. Chem. 2016, 128, 13693;
- 15cY. Zhu, K. Huang, J. Pan, X. Qiu, X. Luo, Q. Qin, J. Wei, X. Wen, L. Zhang, N. Jiao, Nat. Commun. 2018, 9, 2625;
- 15dFor an earlier example, see: G. Petrović, Ž. Čeković, Tetrahedron Lett. 1997, 38, 627.
- 16A. Hu, J.-J. Guo, H. Pan, H. Tang, Z. Gao, Z. Zuo, J. Am. Chem. Soc. 2018, 140, 1612.
- 17D. P. Curran, D. Kim, H. T. Liu, W. Shen, J. Am. Chem. Soc. 1988, 110, 5900.
- 18Z. Li, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2018, 57, 13288; Angew. Chem. 2018, 130, 13472.
- 19A similar reaction has been developed independently by the group of Nagib, see: Z. Zhang, L. M. Stateman, D. A. Nagib, Chem. Sci. 2018, https://doi.org/10.1039/c8sc04366c.
- 20
- 20aV. Quint, F. Morlet-Savary, J.-F. Lohier, J. Lalevée, A.-C. Gaumont, S. Lakhdar, J. Am. Chem. Soc. 2016, 138, 7436;
- 20bI. Kim, M. Min, D. Kang, K. Kim, S. Hong, Org. Lett. 2017, 19, 1394.
- 21B. J. Jelier, P. F. Tripet, E. Pietrasiak, I. Franzoni, G. Jeschke, A. Togni, Angew. Chem. Int. Ed. 2018, 57, 13784; Angew. Chem. 2018, 130, 13980.
- 22A.-L. Barthelemy, B. Tuccio, E. Magnier, G. Dagousset, Angew. Chem. Int. Ed. 2018, 57, 13790; Angew. Chem. 2018, 130, 13986.
- 23For a review on dual photoredox/copper-catalyzed reactions, see:
- 23aE. B. Mclean, A.-L. Lee, Tetrahedron 2018, 74, 4881; For a recent example, see:
- 23bW. Sha, L. Deng, S. Ni, H. Mei, J. Han, Y. Pan, ACS Catal. 2018, 8, 7489.
- 24For the γ-C(sp3)-H azidation of amides using TsN3 as azide donor, see: Y. Xia, L. Wang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 12940; Angew. Chem. 2018, 130, 13122.
- 25Y. Sawama, K. Shibata, Y. Sawama, M. Takubo, Y. Monguchi, N. Krause, H. Sajiki, Org. Lett. 2013, 15, 5282.
- 26For the γ-C(sp3)-H cyanation of amides using hypervalent iodine reagent, see: S. P. Morcillo, E. M. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2018, 57, 12945; Angew. Chem. 2018, 130, 13127.
- 27
- 27aW. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G. Liu, Science 2016, 353, 1014;
- 27bD. Wang, N. Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 15632;
- 27cF. Wang, P. Chen, G. Liu, Acc. Chem. Res. 2018, 51, 2036.
- 28T. Castanheiro, J. Suffert, M. Donnard, M. Gulea, Chem. Soc. Rev. 2016, 45, 494.
- 29For trifluoromethylthiocyanation of alkenes, see: Z. Liang, F. Wang, P. Chen, G. Liu, Org. Lett. 2015, 17, 2438.
- 30X.-H. Yang, H.-T. Yue, N. Yu, Y.-P. Li, J.-H. Xie, Q.-L. Zhou, Chem. Sci. 2017, 8, 1811.
- 31
- 31aA. Bunescu, T. M. Ha, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 10555; Angew. Chem. 2017, 129, 10691;
- 31bX. Bao, T. Yokoe, T. M. Ha, Q. Wang, J. Zhu, Nat. Commun. 2018, 9, 3725.