Sequences of Sequences: Spatial Organization of Coded Matter through Layer-by-Layer Assembly of Digital Polymers
Dr. Roza Szweda
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorMichel Tschopp
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorDr. Olivier Felix
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorCorresponding Author
Prof. Gero Decher
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorCorresponding Author
Dr. Jean-François Lutz
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorDr. Roza Szweda
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorMichel Tschopp
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorDr. Olivier Felix
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorCorresponding Author
Prof. Gero Decher
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorCorresponding Author
Dr. Jean-François Lutz
Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
Search for more papers by this authorGraphical Abstract
Thin films containing segregated layers of digitally encoded polymers were prepared and characterized. An ASCII-encoded sentence of 160 bytes was stored in these films using a library of 16 different digital polyanions. The results show that abiotic coded matter can be organized in precise nanoscale morphologies.
Abstract
A library of 16 digitally encoded polyanions was used in a layer-by-layer (LbL) polyelectrolyte assembly to nanofabricate thin films containing digitally coded strata. The polyanions were digital polyphosphodiesters (d-PPDE) prepared via an automated phosphoramidite process. Each component of the library contained 10 bytes of ASCII-encoded text (i.e. 80 coded monomers); thus the entire library allows the writing of a full sentence, which can be stored in a multilayer film as a sequence of sequences. To prepare fully segregated digital domains, non-coded layers composed of poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) were included between the d-PPDE coded layers as an intermediate barrier. Detailed analysis of the film homogeneity indicated formation of 70 nm-thick films in which digital layers are kept apart from another by non-coded interlayers. As a result, the sequence-coded polymer library could be piled-up in a defined sequence of layers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810559-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ.-F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149;
- 1bH. M. Colquhoun, J.-F. Lutz, Nat. Chem. 2014, 6, 455–456;
- 1cJ.-F. Lutz, Macromolecules 2015, 48, 4759–4767.
- 2
- 2aV. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, W. L. Hughes, Nat. Mater. 2016, 15, 366–370;
- 2bC. Mayer, G. R. McInroy, P. Murat, P. Van Delft, S. Balasubramanian, Angew. Chem. Int. Ed. 2016, 55, 11144–11148; Angew. Chem. 2016, 128, 11310–11314;
- 2cY. Erlich, D. Zielinski, Science 2017, 355, 950;
- 2dS. L. Shipman, J. Nivala, J. D. Macklis, G. M. Church, Nature 2017, 547, 345–349.
- 3
- 3aT. T. Trinh, L. Oswald, D. Chan-Seng, J.-F. Lutz, Macromol. Rapid Commun. 2014, 35, 141–145;
- 3bA. Al Ouahabi, L. Charles, J.-F. Lutz, J. Am. Chem. Soc. 2015, 137, 5629–5635;
- 3cR. K. Roy, A. Meszynska, C. Laure, L. Charles, C. Verchin, J.-F. Lutz, Nat. Commun. 2015, 6, 7237;
- 3dG. Cavallo, A. Al Ouahabi, L. Oswald, L. Charles, J.-F. Lutz, J. Am. Chem. Soc. 2016, 138, 9417–9420;
- 3eU. S. Gunay, B. E. Petit, D. Karamessini, A. Al Ouahabi, J.-A. Amalian, C. Chendo, M. Bouquey, D. Gigmes, L. Charles, J.-F. Lutz, Chem 2016, 1, 114–126;
- 3fN. Zydziak, W. Konrad, F. Feist, S. Afonin, S. Weidner, C. Barner-Kowollik, Nat. Commun. 2016, 7, 13672;
- 3gA. C. Boukis, K. Reiter, M. Frölich, D. Hofheinz, M. A. R. Meier, Nat. Commun. 2018, 9, 1439.
- 4
- 4aH. Mutlu, J.-F. Lutz, Angew. Chem. Int. Ed. 2014, 53, 13010–13019; Angew. Chem. 2014, 126, 13224–13233;
- 4bJ. Shendure, H. Ji, Nat. Biotechnol. 2008, 26, 1135–1145;
- 4cL. Charles, C. Laure, J.-F. Lutz, R. K. Roy, Macromolecules 2015, 48, 4319–4328;
- 4dJ.-A. Amalian, T. T. Trinh, J.-F. Lutz, L. Charles, Anal. Chem. 2016, 88, 3715–3722.
- 5J. Bonnet, P. Subsoontorn, D. Endy, Proc. Natl. Acad. Sci. USA 2012, 109, 8884.
- 6
- 6aG. Decher, Science 1997, 277, 1232–1237;
- 6bG. Decher, J. B. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd ed., Wiley VCH, Weinheim, 2012.
10.1002/9783527646746 Google Scholar
- 7E. Seyrek, G. Decher, in Polymer Science: A Comprehensive Reference, Vol. 7 (Eds.: ), Elsevier, Amsterdam, 2012, pp. 159–185.
- 8
- 8aF. Caruso, Adv. Mater. 2001, 13, 11–22;
- 8bP. T. Hammond, Adv. Mater. 2004, 16, 1271–1293;
- 8cJ. J. Richardson, J. Cui, M. Björnmalm, J. A. Braunger, H. Ejima, F. Caruso, Chem. Rev. 2016, 116, 14828–14867;
- 8dF.-X. Xiao, M. Pagliaro, Y.-J. Xu, B. Liu, Chem. Soc. Rev. 2016, 45, 3088–3121.
- 9
- 9aJ. B. Schlenoff, S. T. Dubas, T. Farhat, Langmuir 2000, 16, 9968–9969;
- 9bJ. Cho, K. Char, J. D. Hong, K. B. Lee, Adv. Mater. 2001, 13, 1076–1078;
- 9cA. Izquierdo, S. S. Ono, J. C. Voegel, P. Schaaf, G. Decher, Langmuir 2005, 21, 7558–7567.
- 10
- 10aA. A. Mamedov, N. A. Kotov, Langmuir 2000, 16, 5530–5533;
- 10bK. Ariga, J. P. Hill, Q. Ji, Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.
- 11A. Al Ouahabi, M. Kotera, L. Charles, J.-F. Lutz, ACS Macro Lett. 2015, 4, 1077–1080.
- 12
- 12aN. F. König, A. Al Ouahabi, S. Poyer, L. Charles, J.-F. Lutz, Angew. Chem. Int. Ed. 2017, 56, 7297–7301; Angew. Chem. 2017, 129, 7403–7407;
- 12bA. Al Ouahabi, J.-A. Amalian, L. Charles, J.-F. Lutz, Nat. Commun. 2017, 8, 967.
- 13M. Berthelot, La Synthèse Chimique, Baillère, Paris, 1876.
- 14It is important to mention that the coded polyanions selected in this work are not optimal structures for MS/MS decoding. As reported in Reference [12b], poly(phosphodiester)s containing programmed fragmentation sites are mandatory for efficient sequencing. However, the purpose of this initial work being LbL film construction, we chose to work with robust polyelectrolytes that do not contain easily breakable bonds.
- 15N. Cini, T. Tulun, G. Decher, V. Ball, J. Am. Chem. Soc. 2010, 132, 8264–8265.
- 16C. Picart, P. Lavalle, P. Hubert, F. J. G. Cuisinier, G. Decher, P. Schaaf, J. C. Voegel, Langmuir 2001, 17, 7414–7424.
- 17For detailed information about linear and superlinear growth in LbL assembly, see:
- 17aC. Porcel, P. Lavalle, G. Decher, B. Senger, J. C. Voegel, P. Schaaf, Langmuir 2007, 23, 1898–1904;
- 17bP. Bieker, M. Schönhoff, Macromolecules 2010, 43, 5052–5059;
- 17cL. Xu, D. Pristinski, A. Zhuk, C. Stoddart, J. F. Ankner, S. A. Sukhishvili, Macromolecules 2012, 45, 3892–3901.
- 18Z. Takats, J. M. Wiseman, B. Gologan, R. G. Cooks, Science 2004, 306, 471–473.