Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation
Samantha Rohe
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorAvery O. Morris
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorDr. Terry McCallum
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Louis Barriault
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
Search for more papers by this authorSamantha Rohe
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorAvery O. Morris
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorDr. Terry McCallum
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Louis Barriault
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
Search for more papers by this authorGraphical Abstract
A HAT trick: The generation of highly reactive chlorine atoms through photoredox mediated reductive quenching of *[Ir(dF(CF3)ppy)2(dtbbpy)]+ with chloride is reported. The C−H functionalization of a variety of alkanes, alcohols, ethers, ester, amides, aldehydes, and silanes through hydrogen atom transfer (HAT) processes with chlorine atoms underwent efficient redox-neutral coupling reactions with activated alkenes.
Abstract
The selective functionalization of chemically inert C−H bonds remains to be fully realized in achieving organic transformations that are redox-neutral, waste-limiting, and atom-economical. The catalytic generation of chlorine atoms from chloride ions is one of the most challenging redox processes, where the requirement of harsh and oxidizing reaction conditions renders it seldom utilized in synthetic applications. We report the mild, controlled, and catalytic generation of chlorine atoms as a new opportunity for access to a wide variety of hydrogen atom transfer (HAT) reactions owing to the high stability of HCl. The discovery of the photoredox mediated generation of chlorine atoms with Ir-based polypyridyl complex, [Ir(dF(CF3)ppy)2(dtbbpy)]Cl, under blue LED irradiation is reported.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201810187-sup-0001-misc_information.pdf5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. A. Russell, H. C. Brown, J. Am. Chem. Soc. 1955, 77, 4031;
- 1bJ. S. Pilgrim, A. McIlroy, C. A. Taatjes, J. Phys. Chem. A 1997, 101, 1972.
- 2
- 2aH. O. Pritchard, J. B. Pyke, A. F. Trotman-Dickenson, J. Am. Chem. Soc. 1955, 77, 2629;
- 2bG. A. Russell, J. Am. Chem. Soc. 1957, 79, 2977;
- 2cG. A. Russell, J. Am. Chem. Soc. 1958, 80, 4987;
- 2dC. Walling, M. F. Mayahi, J. Am. Chem. Soc. 1959, 81, 1485;
- 2eE. Tschuikow-Roux, J. Niedzielski, F. Faraji, Can. J. Chem. 1985, 63, 1093;
- 2fS. Förgeteg, T. Bérces, J. Photochem. Photobiol. A 1993, 73, 187;
- 2gJ. E. Chateauneuf, J. Org. Chem. 1999, 64, 1054.
- 3For recent reviews, see:
- 3aJ. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102;
- 3bJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; Angew. Chem. 2012, 124, 6934;
- 3cC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322;
- 3dD. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850;
- 3eK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035;
- 3fN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075;
- 3gM. Silvi, P. Melchiorre, Nature 2018, 554, 41; For classic radical methodology:
- 3h Radicals in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2001;
- 3i Encyclopedia of Radicals in Chemistry, Biology and Materials, Vols. 1 and 2 (Eds.: ), Wiley, Chichester, 2012.
- 4V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26.
- 5For reviews, see:
- 5aS. Protti, M. Fagnoni, D. Ravelli, ChemCatChem 2015, 7, 1516;
- 5bL. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017, 2056; For selected examples, see:
- 5cJ. D. Cuthbertson, D. W. C. MacMillan, Nature 2015, 519, 74;
- 5dJ. L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532;
- 5eM. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352, 1304;
- 5fG. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268;
- 5gJ. C. K. Chu, T. Rovis, Nature 2016, 539, 272;
- 5hD.-F. Chen, J. C. K. Chu, T. Rovis, J. Am. Chem. Soc. 2017, 139, 14897;
- 5iK. A. Margrey, W. L. Czaplyski, D. A. Nicewicz, E. J. Alexanian, J. Am. Chem. Soc. 2018, 140, 4213;
- 5jH. Tanaka, K. Sakai, A. Kawamura, K. Oisaki, M. Kanai, Chem. Commun. 2018, 54, 3215;
- 5kJ. Twilton, M. Christensen, D. A. DiRocco, R. T. Ruck, I. W. Davies, D. W. C. Macmillan, Angew. Chem. Int. Ed. 2018, 57, 5369; Angew. Chem. 2018, 130, 5467;
- 5lI. A. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan, Nature 2018, 560, 70; For catalyst mediated HAT, see:
- 5mM. Okada, T. Fukuyama, K. Yamada, I. Ryu, D. Ravelli, M. Fagnoni, Chem. Sci. 2014, 5, 2893;
- 5nX.-Q. Hu, J.-R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2017, 56, 1960; Angew. Chem. 2017, 129, 1988;
- 5oX.-Z. Fan, J.-W. Rong, H.-L. Wu, Q. Zhou, H.-P. Deng, J. D. Tan, C.-W. Xue, L.-Z. Wu, H.-R. Tao, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 8514; Angew. Chem. 2018, 130, 8650;
- 5pA. Hu, J.-J. Guo, H. Pan, Z. Zuo, Science 2018, 361, 668.
- 6
- 6aJ. Kiwi, M. Gratzel, Chem. Phys. Lett. 1981, 78, 241;
- 6bS. A. M. Wehlin, L. Troian-Gautier, G. Li, G. J. Meyer, J. Am. Chem. Soc. 2017, 139, 12903.
- 7Photoredox generation of chlorine atom was reported during preparation of this manuscript: H.-P. Deng, Q. Zhou, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 12661; Angew. Chem. 2018, 130, 12843.
- 8
- 8aD. R. Heitz, J. C. Tellis, G. A. Molander, J. Am. Chem. Soc. 2016, 138, 12715;
- 8bB. J. Shields, A. G. Doyle, J. Am. Chem. Soc. 2016, 138, 12719.
- 9M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, Jr., G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712.
- 10R. Breslow, M. Brandl, J. Hunger, N. Turro, K. Cassidy, K. Krogh-Jespersen, J. D. Westbrook, J. Am. Chem. Soc. 1987, 109, 7204.
- 11
- 11aS. K. Pagire, A. Hossain, L. Traub, S. Kerres, O. Reiser, Chem. Commun. 2017, 53, 12072;
- 11bT. Lei, C. Zhou, M.-Y. Huang, L.-M. Zhao, B. Yang, C. Ye, H. Xiao, Q.-Y. Meng, V. Ramamurthry, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2017, 56, 15407; Angew. Chem. 2017, 129, 15609.
- 12G. S. Lee, S. H. Hong, Chem. Sci. 2018, 9, 5810.
- 13N. Bortolamei, A. A. Isse, A. Gennaro, Electrochim. Acta 2010, 55, 8312.
- 14For examples of silanes, see:
- 14aR. Zhou, Y. Y. Goh, H. Liu, H. Tao, L. Li, J. Wu, Angew. Chem. Int. Ed. 2017, 56, 16621; Angew. Chem. 2017, 129, 16848;
- 14bH. Qrareya, D. Dondi, D. Ravelli, M. Fagnoni, ChemCatChem 2015, 7, 3350; for examples of alkanes, see:
- 14cP. S. Skell, H. N. Baxter, J. M. Tanko, V. Chebolu, J. Am. Chem. Soc. 1986, 108, 6300;
- 14dS. M. Aschmann, R. Atkinson, Int. J. Chem. Kinet. 1995, 27, 613.
- 15J. Jiang, R. Ramozzi, S. Moteki, A. Usui, K. Maruoka, K. Morokuma, J. Org. Chem. 2015, 80, 9264.