Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation
Dr. Ganhua Xie
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Pei Li
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zhiju Zhao
College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, 054001 P. R. China
Search for more papers by this authorDr. Xiang-Yu Kong
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorDr. Zhen Zhang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorDr. Kai Xiao
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorProf. Huanting Wang
Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Liping Wen
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Lei Jiang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Ganhua Xie
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Pei Li
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Zhiju Zhao
College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, 054001 P. R. China
Search for more papers by this authorDr. Xiang-Yu Kong
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorDr. Zhen Zhang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorDr. Kai Xiao
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorProf. Huanting Wang
Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Liping Wen
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Lei Jiang
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorGraphical Abstract
Lighting the way: Inspired by the light-driven proton pump bacteriorhodopsin, an artificial light-powered molecular motor was developed by functionalizing synthetic nanochannels with azobenzene derivatives. These nano-confined machines exhibit autonomous selective transport behavior over long distances upon simultaneous irradiation with UV (365 nm) and visible light (430 nm).
Abstract
In nature, biological machines and motors can selectively transport cargoes across the lipid membranes to efficiently perform various physiological functions via ion channels or ion pumps. It is interesting and challengeable to develop artificial motors and machines of nanodimensions to controllably regulate mass transport in compartmentalized systems. In this work, we show a system of artificial molecular motors that uses light energy to perform transmembrane molecule transport through synthetical nanochannels. After functionalizing the polymer nanochannels with azobenzene derivatives, these nanomachines exhibit autonomous selective transport behavior over a long distance upon simultaneous irradiation with UV (365 nm) and visible (430 nm) light. With new strategies or suitable materials for directed molecular movement, such device can be regarded as a precursor of artificial light-driven molecular pumps.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809627-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. C. Gadsby, Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352;
- 1bE. Gouaux, R. MacKinnon, Science 2005, 310, 1461–1465.
- 2
- 2aO. Beja, J. K. Lanyi, Proc. Natl. Acad. Sci. USA 2014, 111, 6538–6539;
- 2bK. Inoue, S. Ito, Y. Kato, Y. Nomura, M. Shibata, T. Uchihashi, S. P. Tsunoda, H. Kandori, Nat. Commun. 2016, 7, 13415;
- 2cK. Inoue, H. Ono, R. Abe-Yoshizumi, S. Yoshizawa, H. Ito, K. Kogure, H. Kandori, Nat. Commun. 2013, 4, 1678;
- 2dW. Kühlbrandt, Nature 2000, 406, 569–570;
- 2eF. Adebesin, J. R. Widhalm, B. Boachon, F. Lefèvre, B. Pierman, J. H. Lynch, I. Alam, B. Junqueira, R. Benke, S. Ray, J. A. Porter, M. Yanagisawa, H. Y. Wetzstein, J. A. Morgan, M. Boutry, R. C. Schuurink, N. Dudareva, Science 2017, 356, 1386–1388.
- 3
- 3aS. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206;
- 3bK. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377–1400.
- 4J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F. Stoddart, Science 2004, 303, 1845–1849.
- 5P. R. Ashton, V. Balzani, O. Kocian, L. Prodi, N. Spencer, J. F. Stoddart, J. Am. Chem. Soc. 1998, 120, 11190–11191.
- 6C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke, J. F. Stoddart, Nat. Nanotechnol. 2015, 10, 547–553.
- 7M. Peplow, Nature 2015, 525, 18–21.
- 8
- 8aX. Xie, G. A. Crespo, G. Mistlberger, E. Bakker, Nat. Chem. 2014, 6, 202–207;
- 8bI. M. Bennett, H. M. V. Farfano, F. Bogani, A. Primak, P. A. Liddell, L. Otero, L. Sereno, J. J. Silber, A. L. Moore, T. A. Moore, D. Gust, Nature 2002, 420, 398–401.
- 9
- 9aM. Tagliazucchi, I. Szleifer, Mater. Today 2015, 18, 131–142;
- 9bH. Zhang, Y. Tian, L. Jiang, Nano Today 2016, 11, 61–81;
- 9cX. Zhang, J. Zhang, Y.-L. Ying, H. Tian, Y.-T. Long, Chem. Sci. 2014, 5, 2642;
- 9dY. Q. Wang, M. Y. Li, H. Qiu, C. Cao, M. B. Wang, X. Y. Wu, J. Huang, Y. L. Ying, Y. T. Long, Anal. Chem. 2018, 90, 7790–7794;
- 9eY.-L. Ying, Z.-Y. Li, Z.-L. Hu, J. Zhang, F.-N. Meng, C. Cao, Y.-T. Long, H. Tian, Chem 2018, 4, 1893–1901;
- 9fS. Loudwig, H. Bayley, J. Am. Chem. Soc. 2006, 128, 12404–12405.
- 10G. Xie, P. Li, Z. Zhao, Z. Zhu, X.-Y. Kong, Z. Zhang, K. Xiao, L. Wen, L. Jiang, J. Am. Chem. Soc. 2018, 140, 4552–4559.
- 11
- 11aC. Dugave, L. Demange, Chem. Rev. 2003, 103, 2475–2532;
- 11bN. Tamai, H. Miyasaka, Chem. Rev. 2000, 100, 1875–1890;
- 11cH. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–1825;
- 11dJ. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537, 179–184;
- 11eT. Ikeda, O. Tsutsumi, Science 1995, 268, 1873–1875;
- 11fH. Huang, H. Sato, T. Aida, J. Am. Chem. Soc. 2017, 139, 8784–87870.
- 12
- 12aG. Xie, P. Li, Z. Zhang, K. Xiao, X.-Y. Kong, L. Wen, L. Jiang, Adv. Energy Mater. 2018, 8, 1800459;
- 12bX. Shang, G. Xie, X.-Y. Kong, Z. Zhang, Y. Zhang, W. Tian, L. Wen, L. Jiang, Adv. Mater. 2017, 29, 1603884;
- 12cG. Xie, K. Xiao, Z. Zhang, X.-Y. Kong, Q. Liu, P. Li, L. Wen, L. Jiang, Angew. Chem. Int. Ed. 2015, 54, 13664–13668; Angew. Chem. 2015, 127, 13868–13872;
- 12dG. Xie, W. Tian, L. Wen, K. Xiao, Z. Zhang, Q. Liu, G. Hou, P. Li, Y. Tian, L. Jiang, Chem. Commun. 2015, 51, 3135–3138.
- 13
- 13aM. Fujiwara, T. Imura, ACS Nano 2015, 9, 5705–5712;
- 13bY. C. Zhu, M. Fujiwara, Angew. Chem. Int. Ed. 2007, 46, 2241–2244; Angew. Chem. 2007, 119, 2291–2294.
- 14
- 14aK. Ichimura, S. K. Oh, M. Nakagawa, Science 2000, 288, 1624–1626;
- 14bP. Li, G. Xie, X.-Y. Kong, Z. Zhang, K. Xiao, L. Wen, L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 15637–15641; Angew. Chem. 2016, 128, 15866–15870.
- 15M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875–1918.
- 16
- 16aF. Orlik, C. Andersen, R. Benz, Biophys. J. 2002, 83, 309–321;
- 16bY. L. Ying, J. Zhang, F. N. Meng, C. Cao, X. Yao, I. Willner, H. Tian, Y. T. Long, Sci. Rep. 2013, 3, 1662.
- 17
- 17aY. Takashima, T. Nakayama, M. Miyauchi, Y. Kawaguchi, H. Yamaguchi, A. Harada, Chem. Lett. 2004, 33, 890–891;
- 17bY. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
- 18E. Merino, M. Ribagorda, Beilstein J. Org. Chem. 2012, 8, 1071–1090.
- 19P. Liu, G. Xie, P. Li, Z. Zhang, L. Yang, Y. Zhao, C. Zhu, X.-Y. Kong, L. Jiang, L. Wen, NPG Asia Mater. 2018, 10, 849–857.