Mirror-Image Dependence: Targeting Enantiomeric G-Quadruplex DNA Using Triplex Metallohelices
Chuanqi Zhao
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorHualong Song
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
Search for more papers by this authorProf. Peter Scott
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
Search for more papers by this authorAndong Zhao
University of Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Hisae Tateishi-Karimata
FIBER, Konan University, Kobe, 650-0047 Japan
Search for more papers by this authorProf. Naoki Sugimoto
FIBER, Konan University, Kobe, 650-0047 Japan
Search for more papers by this authorProf. Jinsong Ren
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaogang Qu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorChuanqi Zhao
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorHualong Song
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
Search for more papers by this authorProf. Peter Scott
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
Search for more papers by this authorAndong Zhao
University of Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Hisae Tateishi-Karimata
FIBER, Konan University, Kobe, 650-0047 Japan
Search for more papers by this authorProf. Naoki Sugimoto
FIBER, Konan University, Kobe, 650-0047 Japan
Search for more papers by this authorProf. Jinsong Ren
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaogang Qu
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
Search for more papers by this authorGraphical Abstract
Mirror, mirror: Chiral recognition of DNA plays crucial roles in many DNA-relevant events. The binding of ten pairs of iron helical metallohelices to enantiomeric G-quadruplex DNA was screened. The results clearly show mirror-image dependence for the Δ- and Λ-enantiomers binding to d- and l-DNA, respectively.
Abstract
Natural d-DNA and l-DNA are mirror-image counterparts. However, because of the inherent flexibility and conformation diversity of DNA, it is still not clear how enantiomeric compounds recognize d-DNA and l-DNA. Herein, taking G-quadruplex (G4) DNA as an example that has diverse conformations and distinct biofunctions, the binding of ten pairs of iron triplex metallohelices to d- and l-G4 DNA were evaluated. The Δ-enantiomer binds to d-DNA and the Λ-enantiomer binds to l-DNA, exhibiting almost the same stabilization effect and binding affinity. The binding affinity of the Δ-metallohelix with d-G4 is nearly 70-fold higher than that of Λ-metallohelix binding d-G4. Δ-Metallohelix binding to d-G4 follows a two-step binding process driven by a favorable enthalpy contribution to compensate for the associated unfavorable entropy.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201809207-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Bentley, Chem. Soc. Rev. 2005, 34, 609–624;
- 1bH. Caner, E. Groner, L. Levy, I. Agranat, Drug Discovery Today 2004, 9, 105–110;
- 1cJ. Gal, Chirality 2012, 24, 959–976.
- 2D. D'Alonzo, A. Guaragna, G. Palumbo, Chem. Biodiversity 2011, 8, 373–413.
- 3
- 3aR. Corradini, S. Sforza, T. Tedeschi, R. Marchelli, Chirality 2007, 19, 269–294;
- 3bZ. Wang, W. Xu, L. Liu, T. F. Zhu, Nat. Chem. 2016, 8, 698–704;
- 3cR. C. Milton, S. C. Milton, S. B. Kent, Science 1992, 256, 1445–1448;
- 3dL. Tohala, F. Oukacine, C. Ravelet, E. Peyrin, Anal. Chem. 2015, 87, 5491–5495;
- 3eC. Lin, Y. Ke, Z. Li, J. H. Wang, Y. Liu, H. Yan, Nano Lett. 2009, 9, 433–436;
- 3fG. Roelfes, B. L. Feringa, Angew. Chem. Int. Ed. 2005, 44, 3230–3232; Angew. Chem. 2005, 117, 3294–3296;
- 3gT. A. Feagin, D. P. V. Olsen, Z. C. Headman, J. M. Heemstra, J. Am. Chem. Soc. 2015, 137, 4198–4206;
- 3hM. You, G. Zhu, T. Chen, M. J. Donovan, W. Tan, J. Am. Chem. Soc. 2015, 137, 667–674.
- 4I. Tazawa, S. Tazawa, L. M. Stempel, P. O. Ts'o, Biochemistry 1970, 9, 3499–3514.
- 5P. L. Tran, R. Moriyama, A. Maruyama, B. Rayner, J. L. Mergny, Chem. Commun. 2011, 47, 5437–5439.
- 6K. P. Williams, X. H. Liu, T. N. Schumacher, H. Y. Lin, D. A. Ausiello, P. S. Kim, D. P. Bartel, Proc. Natl. Acad. Sci. USA 1997, 94, 11285–11290.
- 7
- 7aD. Eulberg, S. Klussmann, ChemBioChem 2003, 4, 979–983;
- 7bE. Wyszko, M. Szymanski, H. Zeichhardt, F. Muller, J. Barciszewski, V. A. Erdmann, PloS one 2013, 8, e 54741;
- 7cY. Kim, C. J. Yang, W. Tan, Nucleic Acids Res. 2007, 35, 7279–7287.
- 8
- 8aJ. L. Huppert, Chem. Soc. Rev. 2008, 37, 1375–1384;
- 8bG. Biffi, D. Tannahill, J. McCafferty, S. Balasubramanian, Nat. Chem. 2013, 5, 182–186;
- 8cT. Endoh, Y. Kawasaki, N. Sugimoto, Angew. Chem. Int. Ed. 2013, 52, 5522–5526; Angew. Chem. 2013, 125, 5632–5636;
- 8dX. M. Li, K. W. Zheng, J. Y. Zhang, H. H. Liu, Y. D. He, B. F. Yuan, Y. H. Hao, Z. Tan, Proc. Natl. Acad. Sci. USA 2015, 112, 14581–14586;
- 8eY. Xu, Chem. Soc. Rev. 2011, 40, 2719–2740;
- 8fR. J. O'Sullivan, J. Karlseder, Nat. Rev. Mol. Cell. Biol. 2010, 11, 171–181;
- 8gW. J. Chung, B. Heddi, E. Schmitt, K. W. Lim, Y. Mechulam, A. T. Phan, Proc. Natl. Acad. Sci. USA 2015, 112, 2729–2733;
- 8hM. Read, R. J. Harrison, B. Romagnoli, F. A. Tanious, S. H. Gowan, A. P. Reszka, W. D. Wilson, L. R. Kelland, S. Neidle, Proc. Natl. Acad. Sci. USA 2001, 98, 4844–4849;
- 8iM.-Y. Kim, H. Vankayalapati, K. Shin-ya, K. Wierzba, L. H. Hurley, J. Am. Chem. Soc. 2002, 124, 2098–2099;
- 8jJ. Abraham Punnoose, Y. Ma, Y. Li, M. Sakuma, S. Mandal, K. Nagasawa, H. Mao, J. Am. Chem. Soc. 2017, 139, 7476–7484.
- 9
- 9aY. Wang, D. J. Patel, Structure 1993, 1, 263–282;
- 9bA. Ambrus, D. Chen, J. X. Dai, T. Bialis, R. A. Jones, D. Z. Yang, Nucleic Acids Res. 2006, 34, 2723–2735;
- 9cA. T. Phan, V. Kuryavyi, K. N. Luu, D. J. Patel, Nucleic Acids Res. 2007, 35, 6517–6525.
- 10R. del Villar-Guerra, J. O. Trent, J. B. Chaires, Angew. Chem. Int. Ed. 2018, 57, 7171–7175; Angew. Chem. 2018, 130, 7289–7293.
- 11
- 11aM. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin, W. Errington, Chem. Commun. 1997, 1807–1808;
- 11bG. Clarkson, D. J. Fox, P. Gurnani, S. E. Howson, R. M. Phillips, D. I. Roper, D. H. Simpson, P. Scott, S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem. 2011, 4, 31–36;
- 11cA. D. Faulkner, R. A. Kaner, Q. M. A. Abdallah, G. Clarkson, D. J. Fox, P. Gurnani, S. E. Howson, R. M. Phillips, D. I. Roper, D. H. Simpson, P. Scott, Nat. Chem. 2014, 6, 797;
- 11dC. Zhao, J. Geng, L. Feng, J. Ren, X. Qu, Chem. Eur. J. 2011, 17, 8209–8215.
- 12
- 12aR. B. Nair, E. S. Teng, S. L. Kirkland, C. J. Murphy, Inorg. Chem. 1998, 37, 139–141;
- 12bM. T. Carter, M. Rodriguez, A. J. Bard, J. Am. Chem. Soc. 1989, 111, 8901–8911.
- 13
- 13aH. Yu, X. Wang, M. Fu, J. Ren, X. Qu, Nucleic Acids Res. 2008, 36, 5695–5703;
- 13bA. Zhao, S. E. Howson, C. Zhao, J. Ren, P. Scott, C. Wang, X. Qu, Nucleic Acids Res. 2017, 45, 5026–5035;
- 13cH. Qin, C. Zhao, Y. Sun, J. Ren, X. Qu, J. Am. Chem. Soc. 2017, 139, 16201–16209.
- 14X. Qu, J. O. Trent, I. Fokt, W. Priebe, J. B. Chaires, Proc. Natl. Acad. Sci. USA 2000, 97, 12032–12037.
- 15
- 15aC. Bazzicalupi, S. Biagini, A. Bianchi, T. Biver, A. Boggioni, C. Giorgi, P. Gratteri, M. Malavolti, F. Secco, B. Valtancoli, M. Venturini, Dalton Trans. 2010, 39, 9838–9850;
- 15bS. M. Patrick, J. J. Turchi, J. Biol. Chem. 2001, 276, 22630–22637.