Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Non-Close-Packed Hollow Sphere Arrays
Dr. Zhendong Liu
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorWenyang Zhao
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorPrashant Kumar
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorXinyu Li
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorProf. Yasser Al Wahedi
Department of Chemical Engineering, Khalifa University of Science and Technology, Sas Al Nakhl Campus, P.O. Box 2533, Abu Dhabi, United Arabian Emirates
Search for more papers by this authorProf. K. Andre Mkhoyan
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Michael Tsapatsis
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Andreas Stein
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorDr. Zhendong Liu
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorWenyang Zhao
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorPrashant Kumar
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorXinyu Li
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorProf. Yasser Al Wahedi
Department of Chemical Engineering, Khalifa University of Science and Technology, Sas Al Nakhl Campus, P.O. Box 2533, Abu Dhabi, United Arabian Emirates
Search for more papers by this authorProf. K. Andre Mkhoyan
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Michael Tsapatsis
Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Andreas Stein
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455 USA
Search for more papers by this authorGraphical Abstract
Airy architecture: A new concept for the fabrication of nanostructures featuring 3D ordered, non-close-packed hollow sphere arrays is demonstrated through controlling dynamic changes in interfacial properties between template and precursor. The polymeric colloidal crystal provides defined confinement through its tetrahedral and octahedral voids where the arrays are formed as a result of a crystallization-induced rearrangement.
Abstract
While bottom-up syntheses of ordered nanostructured materials at colloidal length scales have been successful at producing close-packed materials, it is more challenging to synthesize non-close-packed (ncp) structures. Here, a metal oxide nanostructure with ncp hollow sphere arrays was synthesized by combining a polymeric colloidal crystal template (CCT) with a Pechini precursor. The CCT provided defined confinement through its tetrahedral (Td) and octahedral (Oh) voids where the three-dimensionally (3D) ordered, ncp hollow sphere arrays formed as a result of a crystallization-induced rearrangement. This nanostructure, consisting of alternating, interconnected large and small hollow spheres, is distinct from the inverse opal structures typically generated from these CCTs. The morphology of the ncp hollow sphere arrays was retained in pseudomorphic transformations involving sulfidation and reoxidation cycling despite the segregation of zinc during these steps.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201808826-sup-0001-misc_information.pdf6.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. C. Christoforidis, P. Fornasiero, ChemCatChem 2017, 9, 1523–1544;
- 1bY. Yin, D. Talapin, Chem. Soc. Rev. 2013, 42, 2484–2487.
- 2
- 2aP. Trogadas, V. Ramani, P. Strasser, T. F. Fuller, M. O. Coppens, Angew. Chem. Int. Ed. 2016, 55, 122–148; Angew. Chem. 2016, 128, 128–156;
- 2bG. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G. Wang, F. Schüth, Chem. Rev. 2016, 116, 14056–14119.
- 3
- 3aM. Cargnello, P. Fornasiero, R. J. Gorte, ChemPhysChem 2013, 14, 3869–3877;
- 3bY. Xia, X. Xia, H.-C. Peng, J. Am. Chem. Soc. 2015, 137, 7947–7966.
- 4
- 4aF. Caruso, R. A. Caruso, H. Möhwald, Science 1998, 282, 1111–1114;
- 4bN. D. Petkovich, A. Stein, Chem. Soc. Rev. 2013, 42, 3721–3739;
- 4cH. Blas, M. Save, P. Pasetto, C. Boissiere, C. Sanchez, B. Charleux, Langmuir 2008, 24, 13132–13137;
- 4dB. P. Bastakoti, Y. Q. Li, T. Kimura, Y. Yamauchi, Small 2015, 11, 1992–2002.
- 5Y. D. Xia, Z. X. Yang, R. Mokaya, Chem. Mater. 2006, 18, 140–148.
- 6
- 6aY. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711–714;
- 6bH. J. Fan, U. Gosele, M. Zacharias, Small 2007, 3, 1660–1671.
- 7
- 7aE. Gonzalez, J. Arbiol, V. F. Puntes, Science 2011, 334, 1377–1380;
- 7bX. H. Xia, Y. Wang, A. Ruditskiy, Y. N. Xia, Adv. Mater. 2013, 25, 6313–6333.
- 8D. Fodor, F. Krumeich, R. Hauert, J. A. van Bokhoven, Chem. Eur. J. 2015, 21, 6272–6277.
- 9
- 9aH. P. M. de Hoog, M. Nallani, N. Tomczak, Soft Matter 2012, 8, 4552–4561;
- 9bD. M. Vriezema, M. Comellas Aragones, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445–1490;
- 9cF. Li, S. A. Delo, A. Stein, Angew. Chem. Int. Ed. 2007, 46, 6666–6669; Angew. Chem. 2007, 119, 6786–6789.
- 10M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141–153.
- 11
- 11aA. Stein, B. E. Wilson, S. G. Rudisill, Chem. Soc. Rev. 2013, 42, 2763–2803;
- 11bY. Z. Li, T. Kunitake, S. Fujikawa, J. Phys. Chem. B 2006, 110, 13000–13004;
- 11cY. Du, L. E. Luna, W. S. Tan, M. F. Rubner, R. E. Cohen, ACS Nano 2010, 4, 4308–4316;
- 11dL. Xu, J. He, Langmuir 2012, 28, 7512–7518;
- 11eL. Wang, S. A. Asher, Chem. Mater. 2009, 21, 4608–4613;
- 11fY. Xia, Y. Yin, Y. Lu, J. McLellan, Adv. Funct. Mater. 2003, 13, 907–918;
- 11gP. V. Braun, Chem. Mater. 2014, 26, 277–286.
- 12
- 12aH. Míguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, Langmuir 1997, 13, 6009–6011;
- 12bA. Blanco, F. Gallego-Gomez, C. Lopez, J. Phys. Chem. Lett. 2013, 4, 1136–1142.
- 13Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 2000, 12, 693–713.
- 14Z. Cai, Y. J. Liu, E. S. P. Leong, J. Teng, X. Lu, J. Mater. Chem. 2012, 22, 24668–24675.
- 15
- 15aH. B. Chen, Y. L. Cao, Y. Z. Zhu, Y. P. Wang, Y. B. Chi, Physica B 2006, 381, 289–293;
- 15bM. Doosje, B. J. Hoenders, J. Knoester, J. Opt. Soc. Am. B 2000, 17, 600–606.
- 16
- 16aH. B. Chen, Y. Z. Zhu, Y. L. Cao, Y. P. Wang, Y. B. Chi, Phys. Rev. B 2005, 72, 113113;
- 16bD. P. Gaillot, C. J. Summers, J. Appl. Phys. 2006, 100, 113118;
- 16cY. L. Cao, Y. Z. Zhu, Z. H. Li, J. Ding, J. S. Liu, Y. B. Chi, Phys. Lett. A 2007, 369, 124–127.
- 17
- 17aG. Zhang, H. B. Wu, T. Song, U. Paik, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 12590–12593; Angew. Chem. 2014, 126, 12798–12801;
- 17bP. M. Arnal, M. Comotti, F. Schuth, Angew. Chem. Int. Ed. 2006, 45, 8224–8227; Angew. Chem. 2006, 118, 8404–8407.
- 18W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, N. Ming, Adv. Mater. 2006, 18, 755–759.
- 19
- 19aR. Fenollosa, F. Meseguer, Adv. Mater. 2003, 15, 1282–1285;
- 19bR. Fenollosa, F. Meseguer, J. Mater. Chem. 2005, 15, 4577–4580.
- 20
- 20aX. Yan, J. Yao, C. Lu, X. Li, J. Zhang, K. Han, B. Yang, J. Am. Chem. Soc. 2005, 127, 7688–7689;
- 20bJ. P. Hoogenboom, C. Retif, E. de Bres, M. van de Boer, A. K. van Langen-Suurling, J. Romijn, A. van Blaaderen, Nano Lett. 2004, 4, 205–208.
- 21K. W. Tan, S. A. Saba, H. Arora, M. O. Thompson, U. Wiesner, ACS Nano 2011, 5, 7960–7966.
- 22F. García-Santamaria, H. T. Miyasaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, C. Lopez, Adv. Mater. 2002, 14, 1144–1147.
- 23
- 23aE. Graugnard, J. S. King, D. P. Gaillot, C. J. Summers, Adv. Funct. Mater. 2006, 16, 1187–1196;
- 23bL. Wang, Q. Yan, X. S. Zhao, J. Mater. Chem. 2006, 16, 4598–4602.
- 24T. Udayabhaskararao, T. Altantzis, L. Houben, M. Coronado-Puchau, J. Langer, R. Popovitz-Biro, L. M. Liz-Marzán, L. Vuković, P. Král, S. Bals, R. Klajn, Science 2017, 358, 514–518.
- 25
- 25aM. P. Pechini, US Patent 3330 697, 1967;
- 25bA. E. Danks, S. R. Hall, Z. Schnepp, Mater. Horiz. 2016, 3, 91–112.
- 26S. G. Rudisill, Z. Y. Wang, A. Stein, Langmuir 2012, 28, 7310–7324.
- 27T. Hansen, A. T. Delariva, S. R. Challa, A. K. Datye, Acc. Chem. Res. 2013, 46, 1720–1730.
- 28
- 28aB. Liu, H. C. Zeng, Small 2005, 1, 566–571;
- 28bE. V. Shevchenko, M. Ringler, A. Schwemer, D. V. Talapin, T. A. Klar, A. L. Rogach, J. Feldmann, A. P. Alivisatos, J. Am. Chem. Soc. 2008, 130, 3274–3275.
- 29
- 29aX. S. Fang, T. Y. Zhai, U. K. Gautam, L. Li, L. M. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 2011, 56, 175–287;
- 29bX. S. Fang, L. M. Wu, L. Hu, Adv. Mater. 2011, 23, 585–598.
- 30
- 30aX. Meng, W. de Jong, A. H. M. Verkooijen, Environ. Prog. Sustainable Energy 2009, 28, 360–371;
- 30bM. Husmann, C. Hochenauer, X. Meng, W. de Jong, T. Kienberger, Energy Fuels 2014, 28, 2523–2534.
- 31Y.-C. Zhou, M. N. Rahaman, J. Mater. Res. 1993, 8, 1680–1686.
- 32C. Kleinlogel, L. J. Gauckler, Adv. Mater. 2001, 13, 1081–1085.
- 33J. Park, H. Zheng, Y. Jun, A. P. Alivisatos, J. Am. Chem. Soc. 2009, 131, 13943–13945.