Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts
Dr. Kaiyue Zhu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Xuefeng Zhu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
Search for more papers by this authorCorresponding Author
Prof. Weishen Yang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
Search for more papers by this authorDr. Kaiyue Zhu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Xuefeng Zhu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
Search for more papers by this authorCorresponding Author
Prof. Weishen Yang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian, 116023 Liaoning, China
Search for more papers by this authorGraphical Abstract
Abstract
Developing high-efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2). In recent years, NiFe-based materials have proven to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this Minireview, recent advances regarding in situ techniques for the characterization of NiFe-based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, Mössbauer spectroscopy, Ultraviolet–visible spectroscopy, differential electrochemical mass spectrometry, and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294–303.
- 2N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52–66; Angew. Chem. 2007, 119, 52–67.
- 3J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. Chen, Adv. Mater. 2017, 29, 1604685.
- 4L. A. H. Munoz, J. C. C. M. Huijben, B. Verhees, G. P. J. Verbong, Technol. Forecasting Soc. Change 2014, 87, 179–190.
- 5Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 6M. S. Faber, S. Jin, Energy Environ. Sci. 2014, 7, 3519–3542.
- 7M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy 2017, 37, 136–157.
- 8M. I. Jamesh, J. Power Sources 2016, 333, 213–236.
- 9F. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale 2015, 7, 19764–19788.
- 10P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Energy Environ. Sci. 2017, 10, 2056–2080.
- 11M. A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 2013, 160, A 1759–A1771.
- 12P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, H. Pang, J. Mater. Chem. A 2017, 5, 7651–7666.
- 13Q. Ding, B. Song, P. Xu, S. Jin, Chem 2016, 1, 699–726.
- 14T. Wu, M. L. Stone, M. J. Shearer, M. J. Stolt, I. A. Guzei, R. J. Hamers, R. Lu, K. Deng, S. Jin, J. R. Schmidt, ACS Catal. 2018, 8, 1143–1152.
- 15B. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev. 2016, 116, 14120–14136.
- 16N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337–365.
- 17Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399–404.
- 18J. D. Blakemore, N. D. Schley, M. N. Kushner-Lenhoff, A. M. Winter, F. D′Souza, R. H. Crabtree, G. W. Brudvig, Inorg. Chem. 2012, 51, 7749–7763.
- 19J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 20K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu, W. Yang, J. Mater. Chem. A 2017, 5, 19836–19845.
- 21W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404–1427.
- 22K. Zhu, H. Liu, X. Li, Q. Li, J. Wang, X. Zhu, W. Yang, Electrochim. Acta 2017, 241, 433–439.
- 23J. Y. C. Chen, J. T. Miller, J. B. Gerken, S. S. Stahl, Energy Environ. Sci. 2014, 7, 1382–1386.
- 24H. Y. Wang, S. F. Hung, H. Y. Chen, T. S. Chan, H. M. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 36–39.
- 25H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 2016, 11, 601–625.
- 26L. Han, S. Dong, E. Wang, Adv. Mater. 2016, 28, 9266–9291.
- 27K. Zhu, T. Wu, Y. Zhu, X. Li, M. Li, R. Lu, J. Wang, X. Zhu, W. Yang, ACS Energy Lett. 2017, 2, 1654–1660.
- 28B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice, Y. Yan, Energy Environ. Sci. 2017, 10, 121–128.
- 29J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya, W. Schuhmann, Adv. Energy Mater. 2017, 7, 1700381.
- 30H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Ed. 2017, 56, 12566–12570; Angew. Chem. 2017, 129, 12740–12744.
- 31T. Y. Ma, J. L. Cao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2016, 55, 1138–1142; Angew. Chem. 2016, 128, 1150–1154.
- 32J. Xie, Y. Xie, Chem. Eur. J. 2016, 22, 3588–3598.
- 33D. Li, H. Baydoun, C. N. Verani, S. L. Brock, J. Am. Chem. Soc. 2016, 138, 4006–4009.
- 34Y.-H. Chung, I. Jang, J.-H. Jang, H. S. Park, H. C. Ham, J. H. Jang, Y.-K. Lee, S. J. Yoo, Sci. Rep. 2017, 7, 13801.
- 35B. Wurster, D. Grumelli, D. Hötger, R. Gutzler, K. Kern, J. Am. Chem. Soc. 2016, 138, 3623–3626.
- 36T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2016, 55, 1138–1142; Angew. Chem. 2016, 128, 1150–1154.
- 37X. Lu, W. L. Yim, B. H. R. Suryanto, C. Zhao, J. Am. Chem. Soc. 2015, 137, 2901–2907.
- 38M. Gong, H. Dai, Nano Res. 2015, 8, 23–39.
- 39Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun. 2014, 50, 6479–6482.
- 40J. A. Carrasco, J. Romero, M. Varela, F. Hauke, G. Abellán, A. Hirsch, E. Coronado, Inorg. Chem. Front. 2016, 3, 478–487.
- 41K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, W. Yang, Chem. Commun. 2016, 52, 11803–11806.
- 42M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452–8455.
- 43D. A. Corrigan, J. Electrochem. Soc. 1987, 134, 377–384.
- 44K. Zhu, H. Liu, M. Li, X. Li, J. Wang, X. Zhu, W. Yang, J. Mater. Chem. A 2017, 5, 7753–7758.
- 45M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077–7084.
- 46R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550–557.
- 47C. Tang, H.-F. Wang, H.-S. Wang, F. Wei, Q. Zhang, J. Mater. Chem. A 2016, 4, 3210–3216.
- 48S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, A. T. Bell, J. Phys. Chem. C 2015, 119, 7243–7254.
- 49M. Wehrens-Dijksma, P. H. L. Notten, Electrochim. Acta 2006, 51, 3609–3621.
- 50H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 1966, 11, 1079–1087.
- 51T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.
- 52J. Li, R. Guttinger, R. More, F. Song, W. Wan, G. R. Patzke, Chem. Soc. Rev. 2017, 46, 6124–6147.
- 53K. S. Joya, X. Sala, Phys. Chem. Chem. Phys. 2015, 17, 21094–21103.
- 54Y. Deng, B. S. Yeo, ACS Catal. 2017, 7, 7873–7889.
- 55C. H. van Oversteeg, H. Q. Doan, F. M. de Groot, T. Cuk, Chem. Soc. Rev. 2017, 46, 102–125.
- 56S. Schlücker, Angew. Chem. Int. Ed. 2014, 53, 4756–4795; Angew. Chem. 2014, 126, 4852–4894.
- 57Y. Deng, A. D. Handoko, Y. Du, S. Xi, B. S. Yeo, ACS Catal. 2016, 6, 2473–2481.
- 58M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329–12337.
- 59L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744–6753.
- 60B. J. Trześniewski, O. Diaz-Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. M. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112–15121.
- 61J. J. Velasco-Vélez, T. E. Jones, V. Pfeifer, C.-L. Dong, Y.-X. Chen, C.-M. Chen, H.-Y. Chen, Y.-R. Lu, J.-M. Chen, R. Schlögl, A. Knop-Gericke, C. H. Chuang, J. Phys. D 2017, 50, 024002.
- 62M. Balasubramanian, C. A. Melendres, S. Mini, J. Phys. Chem. B 2000, 104, 4300–4306.
- 63D. Wang, J. Zhou, Y. Hu, J. Yang, N. Han, Y. Li, T.-K. Sham, J. Phys. Chem. C 2015, 119, 19573–19583.
- 64B. S. Yeo, S. L. Klaus, P. N. Ross, R. A. Mathies, A. T. Bell, ChemPhysChem 2010, 11, 1854–1857.
- 65J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83–89.
- 66C. Toparli, A. Sarfraz, A. D. Wieck, M. Rohwerder, A. Erbe, Electrochim. Acta 2017, 236, 104–115.
- 67H. G. Sanchez Casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara, A. Nilsson, Angew. Chem. Int. Ed. 2014, 53, 7169–7172; Angew. Chem. 2014, 126, 7297–7300.
- 68N. Sivasankar, W. W. Weare, H. Frei, J. Am. Chem. Soc. 2011, 133, 12976–12979.
- 69D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801–6809.
- 70Y.-F. Li, A. Selloni, ACS Catal. 2014, 4, 1148–1153.
- 71N. Li, D. K. Bediako, R. G. Hadt, D. Hayes, T. J. Kempa, C. F. Von, D. C. Bell, L. X. Chen, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491.
- 72D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305–1313.
- 73M. K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, ACS Catal. 2016, 6, 155–161.
- 74M. Görlin, P. Chernev, J. Ferreira de Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2016, 138, 5603–5614.
- 75M. Görlin, J. Ferreira de Araújo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2017, 139, 2070–2082.
- 76M. Favaro, W. S. Drisdell, M. A. Marcus, J. M. Gregoire, E. J. Crumlin, J. A. Haber, J. Yano, ACS Catal. 2017, 7, 1248–1258.
- 77J. Landon, E. Demeter, N. İnoğlu, C. Keturakis, I. E. Wachs, R. Vasić, A. I. Frenkel, J. R. Kitchin, ACS Catal. 2012, 2, 1793–1801.
- 78M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717–2730.
- 79K. A. Stoerzinger, W. T. Hong, E. J. Crumlin, H. Bluhm, Y. Shao-Horn, Acc. Chem. Res. 2015, 48, 2976–2983.
- 80M. Favaro, J. Yang, S. Nappini, E. Magnano, F. M. Toma, E. J. Crumlin, J. Yano, I. D. Sharp, J. Am. Chem. Soc. 2017, 139, 8960–8970.
- 81H. Ali-Löytty, M. W. Louie, M. R. Singh, L. Li, H. G. Sanchez Casalongue, H. Ogasawara, E. J. Crumlin, Z. Liu, A. T. Bell, A. Nilsson, D. Friebel, J. Phys. Chem. C 2016, 120, 2247–2253.
- 82X. Li, K. Zhu, J. Pang, M. Tian, J. Liu, A. I. Rykov, M. Zheng, X. Wang, X. Zhu, Y. Huang, B. Liu, J. Wang, W. Yang, T. Zhang, Appl. Catal. B 2018, 224, 518–532.
- 83J. Y. C. Chen, L. Dang, H. Liang, W. Bi, J. B. Gerken, S. Jin, E. E. Alp, S. S. Stahl, J. Am. Chem. Soc. 2015, 137, 15090–15093.
- 84E. Peintler-Kriván, P. S. Tóth, C. Visy, Electrochem. Commun. 2009, 11, 1947–1950.
- 85C. A. Borrás, R. Romagnoli, R. O. Lezna, Electrochim. Acta 2000, 45, 1717–1725.
- 86M. Yoshida, T. Iida, T. Mineo, T. Yomogida, K. Nitta, K. Kato, H. Nitani, H. Abe, T. Uruga, H. Kondoh, Electrochemistry 2014, 82, 355–358.
- 87Z. K. Goldsmith, A. K. Harshan, J. B. Gerken, M. Vörös, G. Galli, S. S. Stahl, S. Hammesschiffer, Proc. Natl. Acad. Sci. USA 2017, 114, 3050–3055.
- 88M. Steimecke, G. Seiffarth, M. Bron, Anal. Chem. 2017, 89, 10679–10686.
- 89H. S. Ahn, A. J. Bard, J. Am. Chem. Soc. 2016, 138, 313–318.