Polyvalent Display of Biomolecules on Live Cells
Dr. Peng Shi
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorNan Zhao
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorDr. Jinping Lai
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorJames Coyne
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorDr. Erin R. Gaddes
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Prof. Yong Wang
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorDr. Peng Shi
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorNan Zhao
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorDr. Jinping Lai
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorJames Coyne
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorDr. Erin R. Gaddes
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorCorresponding Author
Prof. Yong Wang
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA
Search for more papers by this authorGraphical Abstract
Abstract
Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two-step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201712596-sup-0001-misc_information.pdf2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Sackstein, J. S. Merzaban, D. W. Cain, N. M. Dagia, J. A. Spencer, C. P. Lin, R. Wohlgemuth, Nat. Med. 2008, 14, 181–187.
- 2A. D. Fesnak, C. H. June, B. L. Levine, Nat. Rev. Cancer 2016, 16, 566–581.
- 3Z. J. Gartner, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2009, 106, 4606–4610.
- 4H. Liu, B. Kwong, D. J. Irvine, Angew. Chem. Int. Ed. 2011, 50, 7052–7055; Angew. Chem. 2011, 123, 7190–7193.
- 5M. E. Todhunter, N. Y. Jee, A. J. Hughes, M. C. Coyle, A. Cerchiari, J. Farlow, J. C. Garbe, M. A. LaBarge, T. A. Desai, Z. J. Gartner, Nat. Methods 2015, 12, 975–981.
- 6J. A. Prescher, D. H. Dube, C. R. Bertozzi, Nature 2004, 430, 873–877.
- 7G. Gross, T. Waks, Z. Eshhar, Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028.
- 8Q. Wang, H. Cheng, H. Peng, H. Zhou, P. Y. Li, R. Langer, Adv. Drug Delivery Rev. 2015, 91, 125–140.
- 9J. H. Jeong, J. J. Schmidt, R. E. Kohman, A. T. Zill, R. J. DeVolder, C. E. Smith, M.-H. Lai, A. Shkumatov, T. W. Jensen, L. G. Schook, S. C. Zimmerman, H. Kong, J. Am. Chem. Soc. 2013, 135, 8770–8773.
- 10M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2754–2794;
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 2908–2953.10.1002/(SICI)1521-3757(19981016)110:20<2908::AID-ANGE2908>3.0.CO;2-2 Web of Science® Google Scholar
- 11J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272–1279.
- 12H. Wang, R. Wang, K. Cai, H. He, Y. Liu, J. Yen, Z. Wang, M. Xu, Y. Sun, X. Zhou, Q. Yin, L. Tang, I. T. Dobrucki, L. W. Dobrucki, E. J. Chaney, S. A. Boppart, T. M. Fan, S. Lezmi, X. Chen, L. Yin, J. Cheng, Nat. Chem. Biol. 2017, 13, 415–424.
- 13G. J. Gu, M. Friedman, C. Jost, K. Johnsson, M. Kamali-Moghaddam, A. Plückthun, U. Landegren, O. Söderberg, Nat. Biotechnol. 2013, 30, 144–152.
- 14D. Sarkar, J. A. Spencer, J. A. Phillips, W. Zhao, S. Schafer, D. P. Spelke, L. J. Mortensen, J. P. Ruiz, P. K. Vemula, R. Sridharan, S. Kumar, R. Karnik, C. P. Lin, J. M. Karp, Blood 2011, 118, e 184–e191.
- 15U. Vermesh, O. Vermesh, J. Wang, G. A. Kwong, C. Ma, K. Hwang, J. R. Heath, Angew. Chem. Int. Ed. 2011, 50, 7378–7380; Angew. Chem. 2011, 123, 7516–7518.
- 16T. Tokunaga, S. Namiki, K. Yamada, T. Imaishi, H. Nonaka, K. Hirose, S. Sando, J. Am. Chem. Soc. 2012, 134, 9561–9564.
- 17E. Akbari, M. Y. Mollica, C. R. Lucas, S. M. Bushman, R. A. Patton, M. Shahhosseini, J. W. Song, C. E. Castro, Adv. Mater. 2017, 29, 1703632.
- 18K. Gabrielse, A. Gangar, N. Kumar, J. C. Lee, A. Fegan, J. J. Shen, Q. Li, D. Vallera, C. R. Wagner, Angew. Chem. Int. Ed. 2014, 53, 5112–5116; Angew. Chem. 2014, 126, 5212–5216.
- 19B. Wang, J. Song, H. Yuan, C. Nie, F. Lv, L. Liu, S. Wang, Adv. Mater. 2014, 26, 2371–2375.
- 20R. M. Dirks, N. A. Pierce, Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278.
- 21N. Chen, X. Shi, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 6657–6661; Angew. Chem. 2016, 128, 6769–6773.
- 22F. Xuan, I. M. Hsing, J. Am. Chem. Soc. 2014, 136, 9810–9813.
- 23G. Zhu, S. Zhang, E. Song, J. Zheng, R. Hu, X. Fang, W. Tan, Angew. Chem. Int. Ed. 2013, 52, 5490–5496; Angew. Chem. 2013, 125, 5600–5606.
- 24X. Yu, Z. Liu, J. Janzen, I. Chafeeva, S. Horte, W. Chen, R. K. Kainthan, J. N. Kizhakkedathu, D. E. Brooks, Nat. Mater. 2012, 11, 468–476.
- 25M. Mourez, R. S. Kane, J. Mogridge, S. Metallo, P. Deschatelets, B. R. Sellman, G. M. Whitesides, R. J. Collier, Nat. Biotechnol. 2001, 19, 958–961.
- 26W. Fischer, S. Perkins, J. Theiler, T. Bhattacharya, K. Yusim, R. Funkhouser, C. Kuiken, B. Haynes, N. L. Letvin, B. D. Walker, B. H. Hahn, B. T. Korber, Nat. Med. 2007, 13, 100–106.
- 27S. Reitsma, D. W. Slaaf, H. Vink, M. A. M. J. van Zandvoort, M. G. A. oude Egbrink, Pflugers Arch. 2007, 454, 345–359.
- 28G. Y. Lee, P. A. Kenny, E. H. Lee, M. J. Bissell, Nat. Methods 2007, 4, 359–365.
- 29D. Huh, G. A. Hamilton, D. E. Ingber, Trends Cell Biol. 2011, 21, 745–754.
- 30H. Koo, M. Choi, E. Kim, S. K. Hahn, R. Weissleder, S. H. Yun, Small 2015, 11, 6458–6466.
- 31A. Pulsipher, D. Dutta, W. Luo, M. N. Yousaf, Angew. Chem. Int. Ed. 2014, 53, 9487–9492; Angew. Chem. 2014, 126, 9641–9646.
- 32L. Bian, D. Y. Zhai, R. L. Mauck, J. A. Burdick, Tissue Eng. Part A 2010, 17, 1137–1145.
- 33Y. H. Roh, R. C. H. Ruiz, S. Peng, J. B. Lee, D. Luo, Chem. Soc. Rev. 2011, 40, 5730–5744.
- 34C. Lin, R. Jungmann, A. M. Leifer, C. Li, D. Levner, G. M. Church, W. M. Shih, P. Yin, Nat. Chem. 2012, 4, 832–839.
- 35M. R. Jones, N. C. Seeman, C. A. Mirkin, Science 2015, 347, 1260901.
- 36E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539–544.
- 37W. Sun, E. Boulais, Y. Hakobyan, W. L. Wang, A. Guan, M. Bathe, P. Yin, Science 2014, 346, 1258361.